
DduP – Towards a Deduplication Framework utilising
Apache Spark

Niklas Wilcke

Datenbanken und Informationssysteme (ISYS)
University of Hamburg
Vogt-Koelln-Strasse 30

22527 Hamburg
1wilcke@informatik.uni-hamburg.de

Abstract: This paper is about a new framework called DeduPlication (DduP). DduP
aims to solve large scale deduplication problems on arbitrary data tuples. DduP tries
to bridge the gap between big data, high performance and duplicate detection. At the
moment a first prototype exists but the overall project status is work in progress. DduP
utilises the promising successor of Apache Hadoop MapReduce [Had14], the Apache
Spark Framework [ZCF+10] and its modules MLlib [MLl14] and GraphX [XCD+14].
The three main goals of this project are creating a prototype of the mentioned frame-
work DduP, analysing the deduplication process about scalability and performance and
evaluate the behaviour of different small cluster configurations.

Tags: Duplicate Detection, Deduplication, Record Linkage, Machine Learning, Big
Data, Apache Spark, MLlib, Scala, Hadoop, In-Memory

1 Introduction

Duplicate detection is the problem to find all duplicates within a set of elements. Duplicate
detection is a performance critical task because of its quadratic complexity. Therefore it
seems to be a promising approach to scale horizontally by solving deduplication problems
on a distributed environment. On the other hand there are some drawbacks when switching
to a classic map reduce framework like Apache MapReduce. We want to avoid these
drawbacks by utilising the Apache Spark framework.

The main contributions of this paper are as follows: First, we describe the problems inher-
ent to deduplication frameworks based on Apache MapReduce. Second, we describe the
Apache Spark framework and its benefits for deduplication, in particular. Third, we de-
scribe architectural concepts of our deduplication framework and detail how it will make
use of existing libraries.

2 Related Work

The deduplication process described by Peter Christen in the book “Data Matching” [Chr12b]
is the basis for this work. It consists of five steps which shall be briefly explained. The
first step is the preprocessing bringing the data into a standardised form. To reduce the
quadratic complexity it is followed by a search space reduction, which selects candidate
pairs from the search space in an efficient way. Search space reduction is often done by
blocking [Chr12a]. The members of each selected pair are compared by a previously cho-
sen set of measures (one per feature) to determine their similarity. Having assigned such a
similarity vector to each pair a classifier splits the set into duplicate pairs and no-duplicate
pairs. Typically the classification step is followed by a clustering phase [Chr12b]. The last
step is the evaluation of the result.

Kolb, Thor and Ram at the University of Leipzig published “Dedoop: Efficient Dedupli-
cation with Hadoop” [KTR12]. Dedoop is a Hadoop MapReduce based application to
perform deduplication. It is not open source and still a prototype therefore it’s hard to
investigate or contribute to. Using Hadoop MapReduce as a platform for duplicate detec-
tion has the following drawbacks. Hadoop MapReduce is not designed for an interactive
usage. It is made for big data batch processing. Especially in the elaborative usage of such
a framework an interactive quick responding shell is an advantage. A shell would ease the
way exploring the framework and developing own applications.

Optimisation is a huge topic in duplicate detection. For each step in the process described
by Christen there are several different algorithms and each one can be parameterised with
multiple parameters. Finding the right configuration for a particular data source is a com-
plex problem. Hadoop MapReduce lacks the ability to cache intermediate results to use
them for multiple alternatives.

Implementing complex algorithms with Hadoop MapReduce is also difficult because of
its low level API. Having high level primitives for distributed computing would simplify
development. Nevertheless Hadoop MapReduce is a mature standard for distributed batch
processing.

Apache Pig is a high level API for Apache Hadoop. Scripts are written in a procedural
language called Pig Latin. Apache Pig enables the user also to store intermediate results
in-memory. There is also Apache Hive, which is a data warehousing API on top of Apache
Hadoop. Apache Hive provides data access in a declarative way via HiveQL an SQL
like querying language. Both high level APIs are not designed to integrate in an existing
programming language. Therefor they are not optimised to build huge projects, because
the code written in Pig Latin or HiveQL is very hard to refactor.

Apache Spark introduces the new concept of a Resilient Distributed Dataset (RDD). It
creates a high level abstraction for distributed fault tolerant in-memory computation. One
huge advantage of RDDs is to be storable in memory for later reuse. Especially iterative
algorithms benefit from this fact but also a process pipeline gets accelerated. For that rea-
son Spark doesn’t depend on slow hard disk I/O assuming a proper cluster configuration.
RDDs are mostly distribution transparent. As a result the RDD API feels very much like
programming in a non distributed environment. There is no need to learn a new program-

ming language because Spark offers bindings for Scala1, Java and Python. Apache Spark
claims to be the first interactive map reduce like platform. Coming with an interactive shell
and a local mode Spark enables the user to start experimenting very quick. Testing and
executing Apache Spark applications during development is also very easy. There is no
need for a running Spark cluster. Only the spark libraries needs to be present in the project
class path and a local cluster will be started on application startup. Other big projects like
Apache Mahout [Mah14] are moving from Hadoop MapReduce to Spark. That will enrich
the set of available algorithms for machine learning. The Mahout project is also about to
build a R2 like Scala Domain Specific Language (DSL) for Linear Algebra.

Apache Storm and Apache Flink are also two map reduce like computing frameworks in
the Apache universe. Apache Flink is a very young project that combines a map reduce like
API for distributed computations with query optimisation known from parallel databases.
It has also an interactive shell but is still an incubator project and therefore not that mature.
Apache Storm is a distributed real time data processing system. Both of them do not offer
that much library support like Spark does.

Apache Spark seems to be the most promising candidate for implementing DduP on top.
With its lean high level functional API, in-memory approach and programming language
integration it meets our demands. Further more it ships with an interactive shell and is
very easy to get started with. It is under active development and cutting edge approach in
map reduce like distributed computing. There is an ecosystem of several libraries growing
up and other projects like Mahout are migrating to Spark.

3 Duplicate Detection Process utilising Apache Spark

We interpret duplicate detection in the most general way. The problem is to find all dupli-
cates within a Set C of tuples called corpus. A tuple is a datum with n features separated
by a given scheme. It’s mathematical representation is a n-dimensional vector. Each di-
mension corresponds to a feature. One possible four-dimensional tuple scheme and an
example instance could be the following one describing persons.

Person Scheme and Example Instance

(forname, lastname, birthdate, place of birth)

(Max, Mustermann, 01.01.1970, Musterstadt)

Our duplicate detection process only slightly differs from Christen’s previously mentioned
one. All tuples get parsed from its input sources and afterwards they get preprocessed.

1Scala is a multi paradigm programming language combining object orientation and functional aspects which
is executable on a Java Virtual Machine.

2R is a programming language focusing on statistics

There are different generic preprocessing steps available. For instance there are trim, to
lower and regular expression removal steps. The only allowed type for features is String
at the moment. Also numeric features are represented by strings. Strings were chosen be-
cause common similarity measures are defined to operate on them. To find typos and other
errors introduced by human interaction a string representation seems to be more sensible.
Nevertheless other types would also be possible to integrate. Result of the preprocessing
is a set of all tuples called corpus.

To reduce the quadratic search space a blocking step filters out possible duplicate pairs in
subquadratic time. There are two algorithms implemented. Suffix Array Blocking is im-
plemented by using the Spark core API. Sorted Neighbourhood Blocking is implemented
using the SlidingRDD from MLlib. Implementing other sliding window algorithms is very
easy utilising SlidingRDD. Blocking is the crucial step in the whole process. Achieving a
reduction ratio which is too low results in a long runtime and high memory consumption.
A higher reduction ratio corresponds in general to a lower recall and therefore a loss of
duplicate pairs. This trade-off is an optimisation problem which at the moment needs to
be solved manually. Result of the blocking are tuple candidate pairs.

Every resulting candidate pair is compared featurewise by a similarity measure. There
are several different measures available and most of them are normalised to the interval
[0, 1]. 0 stands for not equal and 1 represents equality. Whether a normalisation is needed
depends on the classification algorithm. For every feature dimension a measure needs to
be defined. Therefore it’s possible to use different measures for different dimensions. All
the different measures are imported from the Scala library stringmetric [Str14]. Result of
this comparison called similarity step is a similarity vector attached to the each candidate
pair.

The binary classification in duplicate and no-duplicate pairs is done by a previously trained
decision model. MLlib provides a Decision Tree, a Naive Bayse classifier and a Support
Vector Machine (SVM) with a linear kernel for decision modeling. Result of the clas-
sification are the two sets duplicates and no-duplicates. The duplicate set containing all
observed duplicate pairs is converted into a graph using the Spark library GraphX. Two
connected nodes in the graph are representing a duplicate tuple pair. To resolve inconsis-
tencies regarding transitivity a clustering is applied on the graph. The clustering tries to
resolve constellations like A is a duplicate of B and B is a duplicate of C but A is not a
duplicate of C. The whole process and its intermediate data types are depicted in Figure 1.

In this section we want to discuss briefly how the newly implemented steps scale in a
distributed environment. The parsing can be done completely in parallel. Every line re-
spectively tuple representation can be parsed independently. This is also valid for the
preprocessing step.

Blocking in general always needs to shuffle the data. It depends on the algorithm which
kind of shuffle is needed. Sorted Neighbourhood [Chr12b] for instance needs to sort the
whole list of tuples by a key derived from each tuple. As shown in “Minimal MapReduce
Algorithms” [TLX13] this can be done by TeraSort in O(n · log(n)). Having n nodes in
the cluster the fraction of n−1

n of the input tuples needs to be shuffled to different nodes
in the average. n−1

n ≈ n is valid for large n. That means the whole input set has to be

Parsing

Preprocessing

Blocking

Apply Decision Model

Clustering

Train Model

<<File>>

Labeled
Pairs

E
va

lu
at

io
n

<<File>>

Gold
standard

RDD[SymPair[Tuple]]

<<File>>

Tuple
Source 1

<<File>>

Tuple
Source n

...

RDD[SymPair[Tuple]]

RDD[Set[Tuple]]

RDD[SymPair[Tuple]]

Similarity

RDD[(SymPair[Tuple], Array[Double])]

Parsing

Preprocessing

RDD[Tuple]

RDD[Tuple] RDD[Tuple]

Figure 1: Overview of the separated steps (blue) of the duplicate detection process. The connecting
input and output type is illustrated in yellow. RDD is the spark Resilient Distributed Dataset which
can be seen as a distributed generic collection. SymPair is a generic symmetric pair.

relocated. Therefore the network bandwidth becomes an important factor.

Calculating the similarity of a tuple pair can be done in parallel. The classification task
is completely covered by the existing Spark machine learning library MLlib. Clustering
will be done via Sparks GraphX library. In the first step a graph is created with tuples as
vertices and tuple pairs as edges. After deleting weak edges the transitive closure will be
computed by GraphX. Every resulting component is a cluster of duplicates. Using a graph
library for clustering might be an overhead, but the gain is a convenient API to implement
cluster algorithms.

4 DduP Framework - Implementation Guideline

DduP aims to be a modular and open source distributed duplicate detection framework. It
is implemented in Scala 2.10 utilising the Apache Spark framework.

Main guideline is minimalism and the usage of common standards, best practices and ex-
isting libraries. The project tries to focus on topics not covered yet. These topics are pre-
processing, search space reduction, pipelining and evaluation in the context of distributed
computing.

Figure 1 depicts the deduplication process which is a pipeline consisting of several steps
called pipes. A pipe is a generic type combining an input and output type. A pipeline is
a sequence of pipes with corresponding input and output types of the neighbouring steps.
Steps of the same type can easily be replaced. Using this pattern it is easy to build modular
steps for the different phases of the process. The resulting pipeline can be modified easily.
This is especially useful for learning environments. There is a Java Framework “Tinkerpop
Pipes” [Pip14] for building directed process pipelines. Due to its dependence on iterable
collections it is not suitable to process RDDs. The last Spark 1.2 release included an alpha
version of a pipelining framework for MLlib. Drawbacks of that framework are, that only
SchemaRDDs are allowed to be used what may be inefficient. A SchemaRDD is like
relational database table consisting of columns and rows. For that reason we tend to use
our own implementation, which is a type safe directed linear pipeline without any type
restrictions. The architectural decision whether to use an alpha standard from the MLlib
or to use the own implementation is not made yet. Possible libraries to utilise are the
following.

MLlib for decision modelling - included in Spark

MLlib Pipelines for modular pipeline design - alpha version included in Spark since 1.2

GraphX for clustering - included in Spark

Sringmetric for similarity calculation - Open source Scala library [Str14]

Weka (optional) for decision modelling and preprocessing - Open source Java machine
learning software [Wek14]

Apache Mahout (optional) for decision modelling and preprocessing - Open source Ha-
doop machine learning library [Mah14]

Besides its output value every pipe in the pipeline produces an evaluation output. Basi-
cally there are three input sources an evaluation of a single pipe is based on. These are the
corpus containing all tuples, the gold standard containing all true duplicate pairs and the
output of the analysed pipe. Currently implemented evaluation measures are set sizes, rel-
ative errors, recall and precision. Evaluation is also a performance critical task because it
involves expensive calculations. An evaluation log output example of the actual prototype
can be seen in Figure 2.

Implementing a wide range of algorithms is not planned. The focus lies on extensibility.
There are two different blocking algorithms implemented so far. These are Sorted Neigh-
bourhood [Chr12b] and Suffix Array Blocking [Chr12b]. For clustering there is a base
class with functionality to derive clustering algorithms from. The only available imple-
mentation at the moment is a transitive closure clustering.

5 Conclusion and Future work

At the moment there is no open source big data deduplication framework available which
is scalable with respect to the amount cluster nodes. The briefly introduced deduplication
framework called DduP tries to close this gap. It includes pipelining interfaces and imple-
mentations for every step mentioned in the overall process. It offers only a small variety of
algorithms but aims to be extensible. First tests of the framework are promising but further
development and evaluation still needs to be done.

Next step will be the evaluation of the framework. Evaluation will cover different amounts
of data and different cluster settings to evaluate how the process scales. Possible cluster
settings are 2, 4 and 8 worker nodes plus one master. The main evaluation criteria is
the runtime of the process. Performance measures like recall and precision are not that
relevant because algorithm performance is not in the focus.

A difficult task is to provide enough data to saturate the cluster. There are two different
ways to get test data. The first one is to generate synthetic data and the second one is to use
real world data with real duplicates. The usage of real data is difficult, because the gold
standard is typically unknown. Combining the two approaches seems to be promising.
That means taking a real set of data and randomly duplicate and falsify some tuples by
imitating human behaviour. Introducing typos or mistakes based on phonetic equality are
only two possibilities.

A set of 106 tuples and a size of about 100 MB seems to be a good amount of input data
to saturate a small cluster. Depending on the reduction ratio of the search space reduction
step this amount of data can easily lead to a very long runtime. Obtaining such a huge set
of clean real data is also difficult. In 2014 there were less than 5 ·106 articles in the English
Wikipedia [Wik15]. For our purpose data tuples following a scheme are needed and that
are much less than 5 · 106 articles. One possible data source could be the Musicbrainz.org

READING
Number of Tuples: 13555
#---#
Runtime Reading: 00d 00:00:00.293
Runtime Analyser: 00d 00:00:01.602
###
GOLD STANDARD
Number of Pairs: 5754
#---#
Runtime Gold Standard: 00d 00:00:00.059
Runtime Analyser: 00d 00:00:02.490
###
BLOCKING
Reduced search space size: 14200
Naive search space size: 91862235
Reduction ratio: 0,999845421
Max possible recall: 0,625825513
#---#
Runtime Blocking: 00d 00:00:00.055
Runtime Analyser: 00d 00:00:04.350
###
TRAINING SET BUILDING
Training and test set size: 200
#---#
Runtime Training Set Building: 00d 00:00:00.439
Runtime Analyser: 00d 00:00:00.188
###
DECISSION TRAINING
Training set size: 121
Test set size: 79
Training Error: 0,075949367
#---#
Runtime Decission Training: 00d 00:00:01.160
Runtime Analyser: 00d 00:00:00.457
###
DECISSION
Number of duplicate pairs found: 9809
#---#
Runtime Decission: 00d 00:00:00.015
Runtime Analyser: 00d 00:00:00.775
###
CLUSTERING
Recall: 0,551963851
Precission: 0,341578834
#---#
Number of clusters: 2865
Average cluster size: 2,769633508
#---#
Runtime Clustering: 00d 00:00:04.837
Runtime Analyser: 00d 00:00:01.993
###

Figure 2: Sample log output of the current prototype detecting duplicates in a small example data
set. Due to Sparks lazy evaluation the runtimes are not always correctly separated into pipe and
analyser runtime.

[Mus14] database which is a free music database. The database has a complex scheme
and contains many informations about released music albums. The first application of the
DduP framework could be the deduplication of the Musicbrainz database.

Another approach to get input data seems to be sensible. Taking a set of clean real input
data for each feature dimension and do a cartesian product over all dimensions. Having n
feature dimensions with k different real data values each, the resulting test set size is kn.
That means with 4 feature dimensions and 32 different values our target of 106 is reached.
This theoretical data set is not usable because there are many tuples only varying in one
dimension what would be a duplicate. Increasing the size of dimensions and data values
per dimension solves this problem.

For now there is only one very old tool called “DbGen” [DbG14] from the University
Texas in Austin which can do this kind of data generation. It produces clusters of falsified
person tuples. Falsification and other parameters can be adjusted. Basis for the generation
are a set of 62491 different names and 42115 different zip codes. Addresses and social
security numbers gets generated. It looks like we have to implement own tools to prepare
test data.

References

[Chr12a] Peter Christen. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. Knowledge and Data Engineering, IEEE Transactions on, 24(9):1537–
1555, Sept 2012.

[Chr12b] Peter Christen. Data matching. Data-Centric Systems and Appl., Springer, 2012.

[DbG14] DbGen. http://www.cs.utexas.edu/users/ml/riddle/index.html,
2014.

[Had14] Apache Hadoop. http://hadoop.apache.org, 2014.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient Deduplication with
Hadoop. PVLDB, 5(12):1878–1881, 2012.

[Mah14] Apache Mahout. http://mahout.apache.org, 2014.

[MLl14] Apache Spark MLlib. https://spark.apache.org/mllib, 2014.

[Mus14] Musicbrainz. https://musicbrainz.org/, 2014.

[Pip14] Tinkerpop Pipes. http://www.tinkerpop.com, 2014.

[Str14] Stringmetric. https://github.com/rockymadden/stringmetric, 2014.

[TLX13] Yufei Tao, Wenqing Lin, and Xiaokui Xiao. Minimal mapreduce algorithms. In Pro-
ceedings of the 2013 international conference on Management of data, pages 529–540.
ACM, 2013.

[Wek14] Weka. http://www.cs.waikato.ac.nz/ml/weka, 2014.

[Wik15] Wikipedia. https://en.wikipedia.org/wiki/Wikipedia:Size_of\
_Wikipedia, 01 2015.

[XCD+14] Reynold S Xin, Daniel Crankshaw, Ankur Dave, Joseph E Gonzalez, Michael J
Franklin, and Ion Stoica. GraphX: Unifying Data-Parallel and Graph-Parallel Analytics.
arXiv preprint arXiv:1402.2394, 2014.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Sto-
ica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 10–10, 2010.

