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Abstract: SQL-99 allows for nested subqueries at nearly all places within a query.
From a user’s point of view, nested queries can greatly simplify the formulation of
complex queries. However, nested queries that are correlated with the outer queries
frequently lead to dependent joins with nested loops evaluations and thus poor perfor-
mance.

Existing systems therefore use a number of heuristics to unnest these queries, i.e.,
de-correlate them. These unnesting techniques can greatly speed up query processing,
but are usually limited to certain classes of queries. To the best of our knowledge
no existing system can de-correlate queries in the general case. We present a generic
approach for unnesting arbitrary queries. As a result, the de-correlated queries allow
for much simpler and much more efficient query evaluation.

1 Introduction

Subqueries are frequently used in SQL queries to simplify query formulation. Consider
for our running examples the following schema:

• students: {[id, name, major, year, . . . ]}

• exams: {[sid, course, curriculum, date, . . . ]}

Then the following is a nested query to find for each student the best exams (according to
the German grading system where lower numbers are better):

Q1: select s.name,e.course
from students s,exams e
where s.id=e.sid and

e.grade=(select min(e2.grade)
from exams e2
where s.id=e2.sid)

Conceptually, for each student, exam pair (s, e) it determines, in the subquery, whether or
not this particular exam e has the best grade of all exams of this particular student s.

From a performance point of view the query is not so nice, as the subquery has to be re-
evaluated for every student, exam pair. From a technical perspective the query contains a



dependent join, i.e., a nested loop join where the evaluation of the right hand side depends
on the current value of the left-hand side. These joins are highly inefficient, and lead to (at
least) quadratic execution time.

Database management systems (DBMSs) therefore internally rewrite the query to elimi-
nate the correlation. A SQL representation of this rewrite would look like this:

Q1’: select s.name,e.course
from students s,exams e,

(select e2.sid as id, min(e2.grade) as best
from exams e2
group by e2.sid) m

where s.id=e.sid and m.id=s.id and
e.grade=m.best

Here, the evaluation of the subquery no longer depends on the values of s, and thus regular
joins can be used. This kind of unnesting is very important for good query performance,
but existing techniques cannot handle arbitrary queries. For example the subsequent SQL
query is very hard to de-correlate. It determines the exams that a CS or Games Engineering
student should repeat in the future because he or she underachieved in comparison to the
average grade of exams taken by him/her or taken by elder peers:

Q2:
select s.name, e.course
from students s, exams e
where s.id=e.sid and

(s.major = ’CS’ or s.major = ’Games Eng’) and
e.grade>=(select avg(e2.grade)+1 --one grade worse

from exams e2 --than the average grade
where s.id=e2.sid or --of exams taken by

(e2.curriculum=s.major and --him/her or taken
s.year>e2.date)) --by elder peers

To the best of our knowledge, no existing system can unnest such a query. And indeed,
unnesting this query is hard: Standard unnesting techniques rely upon the fact that at-
tributes available within the query can be used to substitute the free variables determined
by the outer query. This is not the case here, s.year for example cannot be substituted.

So clearly this kind of complicated correlated query will be more expensive to evaluate
than a more simple subquery. However, as we will show, it is indeed possible to unnest
even this query. We will have to spend extra effort to derive the value of s.year and
s.major, but we can do so without a dependent join. And the extra effort we will have
to spend is bound by the cost of the dependent join. Most queries will be dramatically
more efficient in the decorrelated form, in the worst case we will have the some join effort.
That is, our unnesting approach will definitely not incur higher costs than the straight-
forward nested loops evaluation – and in the majority of cases improve the performance
dramatically, often by several orders of magnitude. Furthermore, even the worst case is



most likely a win, as eliminating dependent joins allows for more efficient join implemen-
tations. Our contribution can thus be seen as a universally applicable technique for unnest-
ing any kind of nested subquery – in contrast to the special case treatments published and
implemented so far. The universal unnesting technique has been fully implemented in
our main-memory database system HyPer [KN11] and can be experienced via our web
interface hyper-db.de that visualizes the resulting query plans.

And the typical performance gains of query unnesting are immense: Depending on the
query, it replaces an O(n2) algorithm (nested loop join) with an O(n) algorithm (hash
join, joining keys). Furthermore the dependent side is executed for every outer tuple in
the nested case, but only once in the unnested case. On large data sets it is easy to get a
factor 10 or even 100 performance improvement by unnesting, which makes unnesting an
essential technique for query compilation. There are a few cases where nested evaluation
is actually beneficial, in particular if the outer side is very small and the inner side can be
evaluated using an index lookup, but that should be triggered by a conscious decision of
the query optimizer, not by the way the query is formulated. By default, queries should be
unnested completely.

The rest of this paper is structured as follows: We first define the notation used in this pa-
per in Section 2. Then, in Section 3 the algebraic unnesting transformations are specified.
Section 4 covers further optimisation rules that are applicable in special cases (e.g., when
functional dependencies can be inferred). Section 5 is devoted to a “cursory” performance
evaluation that analyses some other well-known DBMSs to our HyPer system which in-
corporates the unnesting described. Finally, we survey the related work and conclude the
paper.

2 Preliminaries

Before looking at the unnesting techniques, we briefly repeat some definitions for rela-
tional algebra, as the notation is not standardized beyond the basic operators.

First, we have the regular (inner) join, which is simply defined as cross product followed
by a selection:

T1 Bp T2 := σp(T1 A T2).

It computes the combination of all matching entries from T1 and T2. It is used in most
SQL queries, but its definition is not sufficient in the presence of correlated subqueries.
The subquery has to be evaluated for every tuple of the outer query, therefore we define
the dependent join as

T1 Cp T2 := {t1 ◦ t2|t1 ∈ T1 ∧ t2 ∈ T2(t1) ∧ p(t1 ◦ t2)}.



Here, the right hand side is evaluated for every tuple of the left hand side. We denote
the attributes produced by an expression T by A(T ), and free variables occurring in an
expression T by F(T ). To evaluate the dependent join, F(T2) ⊆ A(T1) must hold, i.e.,
the attributes required by T2 must be produced by T1.

Note that in this paper we sometimes explicitly mention natural join in the join predicate
to simplify the notation. We assume that all relations occuring in a query will have unique
attribute names, even if they reference the same physical table, thus A B B ≡ A A B.
However, if we explicitly reference the same relation name twice, and call for the natu-
ral join, then the attribute columns with the same name are compared, and the duplicate
columns are projected out. Consider, for example:

(AB C) Bp∧natural join C (B B C)

Here, the top-most join checks both the predicate p and compares the columns of C that
come from both sides (and eliminates one of the two copies of C’s columns).

For semi joins (N), anti joins (T), and outer joins (E, K) we define the dependent variants
accordingly (O, U,F,L), again the right-hand side is evaluated for every tuple of the left-
hand side.

Besides the join operators, we have the group by operator as additional important operator

ΓA;a:f (e) := {x ◦ (a : f(y))|x ∈ ΠA(e) ∧ y = {z|z ∈ e ∧ ∀a ∈ A : x.a = z.a}}

It groups its input e (i.e., a base relation or a relation computed from another algebra
expression) by A, and evaluates one (or more comma separated) aggregation function(s)
to compute aggregated attributes. If A is empty, just one aggregation tuple is produced –
as in SQL with a missing group by-clause.

We can evaluate functions (and thus construct new attributes) by evaluating the map oper-
ator

χa:f (e) := {x ◦ (a : f(x))|x ∈ e}.

Besides these, we need the regular relational algebra operators (σ,A,Π, ρ,∪,∩, \). Using
these operators, we can translate SQL queries into relational algebra.

In the following we will often have to compare sets of attributes. As a shorthand notation,
we define the attribute comparison operator =A as

t1 =A t2 := ∀a∈A : t1.a = t2.a.

Note that unless indicated otherwise this operator has is semantics, i.e., it compares NULL
values as equal.



3 Unnesting

The algebraic representation of a query with correlated subqueries (initially) results in a
dependent join, i.e., an expression of the form

T1 Cp T2.

As already mentioned, these dependent joins are very unfortunate from a performance
perspective, and we want to eliminate them. Fundamentally, we manipulate the algebraic
expression until the right hand side no longer depends on the left hand side, and thus
the dependent join can be transformed into a regular join. We achieve this using two
techniques that we will discuss in the following. First, we try a simple unnesting, that
handles cases where dependencies are created just for syntactic reasons. If that is not
sufficient to unnest the query, we use the general unnesting framework that can handle
arbitrary complex queries.

3.1 Simple Unnesting

Sometimes queries contain correlated subqueries just because they are simpler to formulate
in SQL. An example for that is TPC-H Query 21, which contains a construct similar to the
fragment

select ...
from lineitem l1 ...
where exists (select *

from lineitem l2
where l2.l_orderkey = l1.l_orderkey)

...

This is translated into an algebra expression of the form

l1 O (σl1.okey=l2.okey(l2))

It is easy to see that this fragment can be unnested by moving the dependent predicate up
the tree, transforming the dependent join into a regular join:

l1 Nl1.okey=l2.okey (l2)

In general the simple unnesting phase moves all dependent predicates up the algebra tree as
far as possible, potentially beyond joins, selections, group by, etc., until it reaches a point
where all its attributes are available from the input. If this happens the dependent join can
be transformed into a regular join, as shown by the equivalence explained above. Note
that this predicate pull-up happens purely for decorreleation reasons. Further optimization
steps might push (parts of) the predicate back down again to filter tuples early on.



3.2 General Unnesting

Predicate movement is very easy to implement and already sufficient to handle frequently
occuring simply nested queries. Therefore we try it first, but for the general case we need
a more complex approach: First, we translate the dependent join into a “nicer” dependent
join (i.e., one that is easier to manipulate), and second, we will push the new dependent
join down into the query until we can transform it into a regular join.

Thus, in the first step, we use the following equivalence

T1 Cp T2 ≡ T1 Bp∧T1=A(D)D (D C T2)

where D := ΠF(T2)∩A(T1)(T1).

At a first glance this transformation did not improve the query plan much, as we have
replaced one dependent join by a regular join and another dependent join. However, at
a second glance this transformation is very helpful: In the original expression, we had
to evaluate T2 for every tuple of T1, which could be millions. Therefore, in the second
expression, we first compute the domain D of all variable bindings, evaluate T2 only once
for every distinct variable binding, and then use a regular join to match the results to the
original T1 value. If there are a lot of duplicates, this already greatly reduces the number
of invocations of T2.

This benefit can be illustrated by considering our first example query for determining the
best exam(s) for every student. The straightforward evaluation computes the student’s best
grade for every exam he or she has ever taken, i.e.:

σe.grade=m((students sBs.id=e.sid exams e) C
(Γ∅;m:min(e2.grade)(σs.id=e2.sid exams e2)))

The equivalence rule allows to restrict the computation of the best grades to each student
– instead of computing it redundantly for each (student, exam)-pair. Thus, the dependent
join is executed on the projection of the students’ id only, i.e.:

. . .Πd.id:s.id((students sBs.id=e.sid exams e) C
(Γ∅;m:min(e2.grade)(σd.id=e2.sid exams e2)))

The application of the “Push-Down”-rule for our example query is shown in Figure 1
where the entire query evaluation plan is graphically depicted. In a way, this constitutes
a side-ways information passing from the outer (left) join argument to the inner (right)
argument in order to eliminate redundancy in the evaluation. Therefore, it is important
to implement the projection in the true, duplicate-eliminating semantics and not in the
duplicate-preserving multi-set semantics of SQL.

Even more importantly, we have transformed a generic dependent join into a dependent
join of a set (i.e., a relation without duplicates). Knowing that D contains no duplicates
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Figure 1: Example Application of Dependent Join “Push-Down”

helps in moving the dependent join further down into the query. In the following we will
assume that any relation named D is duplicate free, and in the following equivalences we
only consider dependent joins where the left hand side is a set. However, we emphasize
that this optimization technique for nested queries does preserve the SQL multi-set seman-
tics. All duplicates – contained in the base relations as well as generated by the query –
are retained in the optimized plans; only the set D that constrains the evaluation work of
the nested subquery is duplicate free. If duplicates are to be removed (because of a distinct
clause in the query) we can further exploit this by pushing duplicate elimination down into
the query evaluation plan.

The ultimate goal of our dependent join push-down is to reach a state where the right hand
side no longer depends on the left hand side, i.e.,

D C T ≡ D B T if F(T ) ∩ A(D) = ∅.

In this case we still have to perform a join, but at least we can perform a regular join
instead of the highly inefficient dependent join. And, as we will see, we can always reach
this state. An even nicer goal would be to reach a state where the resulting regular join can
be substituted by existing attributes, eliminating the join altogether. We will discuss that
in Section 4.

Having explained the start and the goal of our dependent join push down, we now look at
individual operators. For selections, a push-down is very simple:

D C σp(T2) ≡ σp(D C T2).

This transformation might look unusual, as we usually want to push selections down, but
that is besides the point of our unnesting transformation: We first push the dependent join
down as far as possible, until it can either be eliminated completely due to substitution,
or until it can be transformed into a regular join. Once all dependent joins have been
eliminated we can use the regular techniques like selection push-down and join reordering
to re-optimize the transformed query.

Pushing a dependent join down another join is more complex, as potentially both sides



could depend upon the dependent join

D C (T1 Bp T2) ≡


(D C T1) Bp T2 : F(T2) ∩ A(D) = ∅
T1 Bp (D C T2) : F(T1) ∩ A(D) = ∅
(D C T1) Bp∧natural join D (D C T2) : otherwise.

If the values provided by the dependent join are only required on one side we push it to
the corresponding side, otherwise we wave to replicate it in both sides. Note that this
push-down rule is overly pessimistic, we can often simplify the parts below the join (see
Section 4), but we stick to the basic push-down for now. If we pushed the dependent join
to both sides we have to augment the join predicate such that both sides are matched on
the D values. Note that the replication is not a performance penalty relative to the original
expression, in both cases T1 and T2 are evaluated |D| times.

For outer joins we always have to replicate the dependent join if the inner side depends on
it, as otherwise we cannot keep track of unmatched tuples from the outer side.

D C (T1 Ep T2) ≡
{

(D C T1) Ep T2 : F(T2) ∩ A(D) = ∅
(D C T1) Ep∧natural join D (D C T2) : otherwise.

D C (T1 Kp T2) ≡ (D C T1) Kp∧natural join D (D C T2).

Similar for semi join and anti join:

D C (T1 Np T2) ≡
{

(D C T1) Np T2 : F(T2) ∩ A(D) = ∅
(D C T1) Np∧natural join D (D C T2) : otherwise.

D C (T1 Tp T2) ≡
{

(D C T1) Tp T2 : F(T2) ∩ A(D) = ∅
(D C T1) Tp∧natural join D (D C T2) : otherwise.

When pushing the dependent join down a group-by operator, the group-operator must
preserve all attributes produces by the dependent join

D C (ΓA;a:f (T )) ≡ ΓA∪A(D);a:f (D C T )

Again, this makes use of the fact that D is a set.

The projection behaves similar to the group by operator

D C (ΠA(T )) ≡ ΠA∪A(D)(D C T )

The only missing operators are the set operations
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Figure 2: Original Query Q1

D C (T1 ∪ T2) ≡ (D C T1) ∪ (D C T2)

D C (T1 ∩ T2) ≡ (D C T1) ∩ (D C T2)

D C (T1 \ T2) ≡ (D C T1) \ (D C T2)

Using these transformations, each dependent join is either eliminated at some point by
substitution, or ends up in front of a base relation, in which case it can be transformed into
a non-dependent join. Thus, the dependent join can be eliminated from any query.

One potential concern for this approach could be that D might become very large, as it
is the set of all variable bindings for the nested subquery. But fortunately that is not the
case. Note that, if the original nested join was T1 C T2, then |D| ≤ |T1|. Thus, if (after
decorrelating the subquery), the top-most join is a hash-join which stores T1 in a hash
table, the memory consumption for that join is at most doubled by computing D. And
that is the absolute worst case. If we know that the values from T1 are duplicate free,
for example because they contain a key, we can even avoid materializing D and read the
join hash table instead, removing any overhead. On the plus side we have transformed
an O(n2) operation into an (ideally) O(n) operation, which is well worth the memory
overhead.

3.3 Optimization of Example Query Q1

As illustrational example, consider the algebraic translation of Query Q1 in Figure 2. It
uses a dependent join to compute the nested subquery, and afterwards uses the produced
attribute m to check the filter condition.

The subsequent transformations are shown in Figure 3 to 7. First, the top-most dependent
join is transformed into a regular join plus a dependent join with the domain of the free
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Figure 3: Query Q1, Transformation Step 1
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Figure 4: Query Q1, Transformation Step 2
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Figure 5: Query Q1, Transformation Step 3
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Figure 6: Query Q1, Transformation Step 4
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Figure 7: Query Q1, Transformation Step 5 (pushing selections back down)
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Figure 8: Query Q1, Optional Transformation Step 6 (decoupling both sides)

Πs.name,e.course

Be.grade>m+1∧(d.id=s.id∨(d.year>e.date∧e.curriculum=d.major))

Bs.id=e.sid

σs.major=...

students s

exams e

Γd.id,d.year,d.major;m:avg(e2.grade)

Bd.id=e2.sid∨(d.year>e2.date∧e2.curriculum=d.major)

Πd.id:s.id,d.year:s.year,d.major:s.major exams e2

Figure 9: Query Q2, Optimized Form with Sideways Information Passing



variables. In the next step the dependent join is pushed down the group by operator,
extending the aggregation attributes as needed. Afterwards, the dependent join is pushed
down the selection, ending up in front of a table scan. Now we can transform it into
a regular join, as the right hand side is not dependent on the left hand side. Subsequent
optimizations will push the predicates down again, introducing a regular join, which results
in the plan shown in Figure 7.

In many cases, and also in this example, it is possible to eliminate the join with the domain
D altogether: If all attributes of the domain are (equi-)joined with existing attributes, we
can instead derive the domain from the existing attributes. In this example, we know that
d.id = e2.sid holds after the join, therefore we can replace this by a map operator that
substitutes d.id with e2.sid, as shown in Figure 8. The nice thing about this substitution
is that the parts of the query are completely independent, no trace of the original nesting
remains. However, substitution creates a superset of the original tuples! At least in general,
in this example referential integrity will most likely prevent that. But in general dropping
the join with the domain and substituting instead can lead to larger intermediate results, as
the filter effect of the join is removed, too. This does not affect the final result, because the
filter will still happen at a later stage (at the original dependent join), but it can affect the
query runtime. Therefore removing the join is a decision that has to be made by the query
optimizer (see Section 4).

Note that some care is needed when trying to remove σd.id=e2.sid after substitution. It
would be tempting to simply drop this selection, as d.id is derived from e2.sid. But this is
only safe if e2.sid is not nullable. If e2.sid can assume NULL values, then the selection
must be preserved (and in fact is simply a not-NULL check).

3.4 Optimization of Example Query Q2

For our motivational query Q2 we illustrate the resulting plan in Figure 9. Note that here
D cannot be eliminated, as there is a non-equi join with values from D, which prevents
substitution. Here, decoupling the nested subquery evaluation is not possible because the
value of s.year is not equi-joinded with e2.date. Therefore, the domain of the outer query
has to be transferred sideways to the nested query evaluation. However, note that all de-
pendent joins have disappeared and were replaced by efficient regular algebraic operators.

3.5 Anti-Join Example

Let us discuss an example of a dependent anti-join which is used for transforming queries
that use an SQL all-clause to compare a value against all values derived by a (possibly
correlated) subquery. Such a query is formulated below for two abstract relations R :
{[A, ...,X, ...]} and S : {[B, ..., Y, ...]}.



Q3: select R.*
from R
where R.X = all (select S.Y

from S
where S.B = R.A)

Obviously, it is not possible to translate this query into a dependent join; but it is possible
to negate the predicate and use a dependent anti-join as shown on the left hand side of
the subsequent figure. In the course of the unnesting optimization the dependent anti-join
can be transformed into a “normal” anti-join. The resulting query plan is shown on the
right-hand side of the subsequent figure.

UX 6=Y

R σS.B=R.A

S

⇒ T(X 6=Y )∧(S.B=R.A)

R S

4 Optimizations

When simple unnesting is successful, it completely eliminates any hint of correlations
from the query. That is, the resulting algebra expression looks as if the query had been
formulated without correlated subqueries. The general unnesting case however has to add
the projection to compute the domain D, and the join with D, which causes some extra
costs. Of course computingD is usually still much preferable to a nested evaluation, as the
computation of D and the join with D cause one-time costs, while a nested evaluation re-
sults in quadratic runtime. But still, eliminating D completely is tempting, and sometimes
possible, as seen in the previous example query Q1 (cf. Figure 8).

In general, we can eliminate D, if we can substitute it with values that already exist in
the subtree anyway. This is commonly the case with equi-joins, for example the query
contains the expression D BD.a=R.b R, we can learn the possible values of D.a that can
make it to the original dependent join by inspecting the values of R.b. The emphasized
part of the statement is important, of course D can contain values that do not exist in R,
but these will never find a join partner and will thus never reach the original dependent
join. We can therefore ignore them.

To decide about substitution we must first analyze the query tree to find equivalence classes
that are induced by the join and filter conditions. For example a filter condition σa=b

implies that a and b are in the same equivalence class. We know that in the final result a
and b have the same value, we can thus substitute awith b. Computing these equivalence is
relatively straight forward. One potential cause for problems would be outer joins, which
can cause a and b to not be equal in the example above, but as the top-most join on D is
known to be NULL-rejecting this is not an issue here.



After having identified the equivalence classes C, we can decide about a possible substi-
tution as shown below:

D C T ⊆ χA(D):B(T ) if ∃B ⊆ A(T ) : A(D) ≡C B.

Thus, instead of joining withD, we can extend T (using the map operator) and compute the
implied attribute value from D by using the equivalent attributes. Note that this only holds
because D is a set. Note further that substitution might increase the size of intermediate
results, the relationship between the two formulations is not = but ⊆. This cardinality
increase is caused by losing the (potential) pruning power of the join with D. Instead of
evaluating the formed correlated subtree with every tuple in T that will find a join partner
in D, we evaluate with every tuple from T . The tuples that do not have join partners will
(only) be eliminated higher up in the tree, when the original dependent join is executed,
but the intermediate results can be larger.

Therefore, substitution only pays off if the join with D is unselective. In Query Q1 that
will be the case, therefore it is a good idea to use substitution, but in general the query
optimization has to compare the costs of both alternatives and chose the cheaper one. For
selective joins, it is better to keep D and thus eliminate tuples as early as possible.

5 Evaluation

Unnesting correlated subqueries can lead to nearly arbitrary gains, as it can transform an
O(n2) into an (ideally) O(n) operation. Demonstrating a factor 100 improvement for
example would be easy with a carefully constructed query. But the examples and the
resulting factors would all be a bit arbitrary. Instead, we therefore first compare the ex-
pressiveness of our technique with that of other systems, and then give some performance
numbers for TPC-H. All experiments were run on an Intel i7-3930K with 64GB main
memory.

We have implemented the unnesting in our HyPer [KN11] system, and compared it to other
approaches. First, we studied the unnesting capabilities of several database systems. Out
of the commercial systems, SQL Server seems to have the best unnesting engine, which
is to be expected based on the publication [GJ01] of the the MS SQL Server team. Un-
fortunately the licensing terms for SQL Server 2014 forbid publishing runtime numbers,
therefore we will only qualitatively describe the result. We also ran experiments on Post-
greSQL 9.1, where we are allowed to publish numbers. As test data for our two example
queries we generated 1,000 student and 10,000 exam tuples, i.e., 10 exams per student.
This is a small data set, but the effects of unnesting are so extreme that we did not want
to increase the data set size. (Roughly speaking, the gains of our method grow quadratic
with the size of the relations, so we could demonstrate arbitrary gains by increasing the
data set size).

Query 1 is relatively simple to unnest. Our HyPer system unnests the query and uses
substitution, which result in a runtime of <1ms. Without unnesting the query takes 51ms
on Hyper. SQL Server 2014 also unnests this query. We are not allowed to report runtimes,



but the query plan is reasonable. PostgreSQL however was not able to unnest even this
relatively simple case, which results in a runtime of 1,300ms. And this runtime grows
very sharply as the data size grows. If, however, the query would have been formulated
decorrelated, as formulated as query Q1′ in the Introduction, then PostgreSQL could have
executed it in 17ms. This demonstrates how important it is to unnest subqueries.

Query 2 is more difficult to unnest, and we are not aware of any system besides our HyPer
system that is able to unnest it. HyPer can execute that query in 42ms (408ms without
unnesting). SQL Server 2014 is not able to unnest this query and generates an execution
plan with nested loop joins. We are not allowed to report the runtime, but obviously one
cannot expect good runtime in a plan with large nested loop joins. PostgreSQL needs
12,099ms for the query, again growing sharply with the data size.

The queries in TPC-H are not that difficult to unnest, and all of the large commercial
systems are able to unnest them. This is indeed absolutely essential, as shown by the
following performance numbers obtained from our HyPer system that allows to “switch on
and off” the unnesting. Even at SF = 1, the runtime of Query 4 is 7ms with unnesting, and
157,616ms without. This is a difference of several orders of magnitude, and highlights that
unnesting is absolutely essential. Other queries are affected, too: For example Query 17
takes 9ms with unnesting, and 4,664ms without. Of course every vendor makes sure that
the well known TPC-H queries are correctly unnested in their system, but these numbers
highlight that the performance impact is so large, that a system should be able to unnest
arbitrary queries, as proposed in this paper.

6 Related Work

The first, seminal paper on optimization of nested subqueries was published by Won Kim
[Kim82]. It provides “recipes” (i.e., transformation rules) for unnesting particular nested
query patterns which were integrated in many commercial database systems. A good sur-
vey of those techniques was given by Jarke and Koch [JK84]. Werner Kiessling [Kie85]
addressed the correctness problems of some of the suggested transformations when empty
sets are encountered. For many, but not all, cases he was able to correctly formulate ef-
fective unnesting transformations. Thus unnesting remained an active field of research, in
particular because of the SQL language extensions that orthogonally allowed nested sub-
queries in all of the select-from-where-clauses. In the Nineties, Seshadri et al. [SPL96]
formulated complex query decorrelationa rules. Dayal’s paper [Day87] focuses on effi-
ciently evaluating subqueries utilizing outer joins. The outer joins (also extensively used
in our transformation rules) can be optimized using transformation/equivalence rules de-
veloped by Galindo-Legaria and Rosenthal [GR97].

Oracle’s subquery optimizations are described by Bellamkonda et. al. [BAW+09]. They
developed a multitude of subquery optimization techniques, auch as unnesting, group-by
merging, common subexpression elimination, join predicate pushdown, join factorization,
anti-join formulations of set minus and intersection queries, etc. Many of these techniques
are applied as preprocessing transformations in a heuristics pattern-matching way – and, as



it appears, are particularly tuned for optimizing “TPC-H-style” queries. In this paper, we
developed a generalized approach that tackles the problem in a uniform way and achieves
similar optimization effects as the special-purpose pattern-matching approaches – as our
“best of breed” TPC-H performance results reveal [LBKN14].

The Tandem approach for unnesting queries is described by Celis and Zeller [CZ97]. At
about the same time, in the context of the Microsoft SL Server, Galindo-Legaria and Joshi
[GJ01] introduced the apply-operator, that is similar to our bind join, for “algebrizing”
SQL queries with nested subqueries. However, their work fell short of being able to trans-
form all possible nesting patterns: “Achieving optimality and syntax-independence in this
class (subqueries that are removed by introducing additional common subexpressions) re-
quires an understanding of the plan space and mechanisms to generate plans of interest,
for queries with common subexpressions, which we believe requires additional research”.
We are confident that our paper closes this cited “research gap”. Graefe’s BTW-paper
[Gra03] discusses Microsoft SQL Server’s approach to evaluate nested queries that could
not be unnested – which was needed when unnesting failed.

A particular query pattern, i.e., scalar subqueries in the presence of disjunctions, was opti-
mized by Brantner, May and Moerkotte [BMM07] using an algebra with bypass operators
[KMPS94]. Another important special case of unnesting queries involving large fact tables
is addressed by Akinde and Böhlen [AB03]. They argue that outer joins are too costly in
OLAP environments with very large fact tables and, instead, propose a generalized multi-
dimensional join operator GMDJ.

In the late Nineties, several groups worked on algebra extension to capture nested sub-
queries. Some of the work was performed in the context of the object-oriented/object
relational models [SAB94] that exhibits data nesting and therefore requires flattening and
nesting of these structures. One of the first proposals for such an object query algebra
was formulated by Cluet and Moerkotte [CM93] and later expanded by Wang, Maier and
Shapiro [WMS99]. Cao and Badia [CB05] proposed the explicit use of nested relations to
evaluate nested subqueries.

The Virtuoso system [Erl12] tries to address the problem of nested queries at runtime,
by evaluating the nested query not once for every outer tuple, but once batch of outer
tuples, similar to a block-wise nested loop join, greatly reducing the cost of nested eval-
uation. During batched execution, each tuple carries a “set number” between operators,
maintaining an association between the intermediate results and the vector of inputs of the
subquery [Erl14]. While not as powerful as a query-optimizer based solution, this is much
more efficient than the standard nested-loop evaluation of nested queries.

Our side-ways information passing optimization to reduce the amount of work incurred by
evaluating the nested subquery (tree) resembles the magic set transformations that were de-
scribed by Seshadri et al [SHP+96] in the context of the IBM DB2 system. Consequently,
in our graphics interface (www.hyper-db.de) for displaying the query evaluation plans
the corresponding operator is called magic.



7 Conclusion

Many proposals for unnesting SQL queries have been published in the past. However,
so far their implementations fell short of comprehensively cover all possible patterns –
as becomes evident by surveying the existing (even recent) literature on optimizing spe-
cial cases. Also, our analyis of commercial and open source database systems revealed
that their optimizations only cover special patterns that (arguably) are the most important
use cases for query nesting. In this paper we have developed an algebraic transforma-
tion approach that covers all kinds of nested subqueries. The algebraic equivalences allow
to completely replace the initially used dependent joins by “regular” join operators. In
order to decrease the extent of the nested query evaluation work, side-ways information
passing is employed that restricts the independent subquery evaluation plan to those tu-
ple sets that are relevant for the outer query. The approach is fully implemented in our
main-memory database system HyPer and can be experimented with via our web interface
www.hyper-db.de that not only displays the running times of interactive queries but
also shows the optimized query evaluation plans. Having integrated the unnesting transfor-
mations into our cost-based optimizer ensures that we are never too eager in, for example,
decoupling the inner query from the outer query and thereby incurring higher costs – the
optimizer will do so only if there is a cost benefit which in many practically relevant cases
is dramatic.
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