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Abstract: The constantly increasing number of connected devices and sensors results
in increasing volume and velocity of sensor-based streaming data. Traditional ap-
proaches for processing high velocity sensor data rely on stream processing engines.
However, the increasing complexity of continuous queries executed on top of high ve-
locity data has resulted in growing demand for federated systems composed of data
stream processing engines and database engines. One of major challenges for such
systems is to devise the optimal query execution plan to maximize the throughput of
continuous queries.

In this paper we present a general framework for federated database and stream
processing systems, and introduce the design and implementation of a cost-based op-
timizer for optimizing relational continuous queries in such systems. Our optimizer
uses characteristics of continuous queries and source data streams to devise an optimal
placement for each operator of a continuous query. This fine level of optimization,
combined with the estimation of the feasibility of query plans, allows our optimizer
to devise query plans which result in 8 times higher throughput as compared to the
baseline approach which uses only stream processing engines. Moreover, our experi-
mental results showed that even for simple queries, a hybrid execution plan can result
in 4 times and 1.6 times higher throughput than a pure stream processing engine plan
and a pure database engine plan, respectively.

1 Introduction
The increasing amount of connected devices and sensors has led to a surge in the amount,
velocity, and value of streaming sensor data. The increasing value of information carried
by the streaming sensor data motivates the need to combine and query such data streams.
Traditional approaches for processing streaming sensor data rely on stream processing
engines (SPE) using continuous queries. A continuous query is issued once and is executed
constantly over the data streams, returning a continuous stream of query results.

Existing SPEs are built either from scratch ([ACc+03, KS04, Esp, Pro], etc.) or on top of
existing database systems [CH10, FKC+09, LGI09]. Despite this fact, they show limita-
tions in processing certain types of complex continuous queries when compared to modern
databases, such as in-memory column stores [Ji13]. In addition, before introducing SPEs,
most of today’s enterprises already have database systems in place for data persistence
and on-demand analytical processing. Hence, the co-existence of a SPE and a DBMS can
be found in many real-world setups. Following the philosophy that “no one size fits all”,



and aiming to explore the potential of such SPE-database setup, in this paper, we propose
to federate the SPE and the database engine for joint execution of continuous queries to
achieve performance which cannot be matched by either engine alone. By “federate”,
we mainly mean outsourcing certain fragments of a continuous query from the SPE to
the database engine when the outsourcing can lead to better performance; the federated
system, however, supports queries that access both streaming data and stored data as well.

One major challenge of such systems is to find the optimal execution plan for a given
continuous query. Existing federated database and stream processing systems either have
no federated optimizer at all [BCD+10], or choose the most suitable system for the entire
query [LHB13]. Moreover, none of them have considered the feasibility property of exe-
cution plans of continuous queries, which describes the capability of a plan to keep up with
the data arrival rate [AN04]. Finally, the heterogeneity between the underlying SPE and
the database engine causes the non-additivity of the query execution cost [DH02]. Specif-
ically, the non-additive execution cost means that the cost of executing two consecutive
operators in the database engine is not necessarily higher than the cost of executing only
the first operator in the database engine. This non-additivity makes it difficult for a query
optimizer to make pruning decisions during plan enumeration. Existing solutions used in
traditional database systems for handling non-additivity must be extended to consider the
feasibility property of plans of continuous queries.

Our major contributions in this paper is the design and implementation of a static cost-
based optimizer for optimizing relational continuous queries in a federated database and
stream processing system. Our optimizer fully exploits the potential of distributed execu-
tion of continuous queries across a SPE and a database engine. Using characteristics of
queries and data streams, our optimizer determines an optimal placement for each opera-
tor in a continuous query, taking into account the feasibility of query plans and the non-
additivity of the query execution cost caused by the federation. To reduce the search space
of query plans, we adopt the two-phase optimization strategy [HS91], which is widely
used in federated or parallel database systems, as well as systems with heterogeneous
multicore architectures (e.g., [HLY+09]). In Phase-One, an optimal logical query plan is
produced; in Phase-Two, placement decisions for all operators in the chosen logical plan
are made. We further exploit plan-pruning opportunity in Phase-Two based on the study of
the cost characteristics of operators placed on the two different engines, thereby reducing
the search space further.

As a proof of concept, we federate a commercial stream processing engine—SAP ESP [Pro],
and a columnar in-memory database system (IMDB)—SAP HANA [SFGL13], for joint
execution of continuous queries. We have implemented the proposed optimization ap-
proach by directly extending the optimizer of the IMDB. We experimentally demonstrate
that our fine level of optimization, combined with the estimation of the feasibility of query
plans, can devise query plans which result in up to 8 times higher throughput when com-
pared to the baseline—the pure SPE-based execution. Our experimental results showed
that even for simple queries, the optimizer can derive non-obvious decisions which result
in up to 4 times higher throughput when compared to the pure SPE-based execution and
up to 1.6 times higher throughput when compared to the pure IMDB-based execution. Our
experimental results confirm the superiority and the necessity of a federated optimizer for



continuous queries working at the operator level.

Note that as pointed in [AN04], static query optimization is a valid approach when the
characteristics of input streams change slowly or the pattern of change is predictable,
which is often observed in data streams originating from sensors with fixed reporting fre-
quencies. Before moving on to a dynamic optimization solution, we must first understand
what can be achieved by doing static optimization for continuous queries in a federated
database and stream processing system, which is the goal of this paper.

The remainder of this paper is organized as follows. Following the background intro-
duction in Section 2, Section 3 gives an overview of continuous query execution in our
prototype federated database and stream processing system. Section 4 defines the query
optimization objective in such federated systems. Section 5 drills down to the cost model
adopted in our optimizer, followed by descriptions of our two-phase optimization approach
in Section 6. Section 7 presents the pruning strategy applied in the second phase of the
optimization. In section 8 we experimentally study the effectiveness of our optimizer. We
discuss related work in Section 9 and conclude in Section 10.

2 Background
This section presents the semantics of continuous queries adopted in our work (Sec-
tion 2.1), as well as basics about the pipelined execution model (Section 2.2).

2.1 Continuous Query Semantics

Although a few studies, such as [ABW06, KS09, BDD+10], have tried to offer clean
semantic models for continuous queries executed over data streams, to date, there is no
established standards. In our work, we adopt the abstract semantics defined in [ABW06],
which is based on two data types, streams and time-varying relations, and three classes
of query operators. Assuming a discrete and ordered time domain T , streams and time-
varying relations are defined as follows:

Stream A stream S is a possibly infinite bag of elements 〈s, τ〉, where s is a tuple belong-
ing to the schema of S and τ ∈ T is the timestamp of s.

Time-varying Relation A time-varying relation R is a mapping from T to a finite but
unbounded bag of tuples belonging to the schema of R. In the following, we call time-
varying relations as relations for short wherever the context of stream processing is clear.

The three classes of query operators are the stream-to-relation (S2R) operators, which pro-
duce one relation from one stream; relation-to-relation (R2R) operators, which produce
one relation from one or more relations; and relation-to-stream (R2S) operators, which
produce one stream from a relation. The most typical S2R operator is the window op-
erator. There are various types of window operators [ABW06, PS06]. In this paper, we
focus on time-based and tuple-based sliding windows. R2R operators are straightforward
counterparts of relational operators in conventional database systems. We focus on selec-
tion, projection, equi-join, and aggregation in this paper. Without loss of generality, we
assume that each R2R operator has at most two input relations; a multi-way join is treated
as a sequence of two-way joins. We adopt the following semantics for sliding-window
aggregations: aggregation results are produced at each slide of the window.



Table 1: Notations for representing logical and physical plans of continuous queries.

Notation Description
T = (O, E) A logical plan of a continuous query CQ

Oi ∈ O A logical operator in T

eij ∈ E Data flow from Oi to Oj

P(T ) = (O′, E ′,M) A physical plan of T
Ospe ∈ O′ A basic physical operator running in the SPE
Odb ∈ O′ A migration candidate (composite operator) running in the database
e′ij ∈ E ′ Data flow from Ox

i to Oy
j , x, y ∈ {spe, db}

M(Ox) The set of logical operators in T that Ox maps to, x ∈ {spe, db}

We have decided to adopt the above described continuous query semantics, because time-
varying relations and R2R operators have straightforward semantic mapping to conven-
tional relations and query operators in database systems, respectively. Hence, it provides
a sound semantics foundation for federated execution of continuous queries.

2.2 Pipelined Execution

We consider the pipelined query execution model [Gra93], which is adopted by most ex-
isting SPEs ( e.g., STREAM [ABW06], Aurora [ACc+03]) to adapt to the “push” char-
acteristic of data streams. With pipelined execution, query operators are organized into
series of producer-consumer pairs that are connected via a buffering mechanism, e.g., data
queues. The producer and the consumer can run in parallel, embodying the so-called pipe-
lined parallelism [HM94]. Pipelined execution allows exploiting the power of modern
multiprocessor machines to accelerate data processing.

We model pipelined relationships among operators in a continuous query CQ with a di-
rected tree, denoted as T = (O, E). A node Oi ∈ O represents a query operator and an
edge eij ∈ E represents the data flow from nodeOi toOj . Similar to [ABW06, KS09], we
adopt notions used in conventional database systems, and refer to such a tree as a logical
plan of CQ. Operators in a logical plan are referred to as logical operators. A logical plan
of a continuous query may have multiple semantically equivalent alternatives. Notations
used for representing continuous queries are summarized in Table 1.

3 Federated Continuous Query Execution
We have built a prototype system which consists of a state-of-the-art SPE (SAP ESP) and
a columnar IMDB (SAP HANA). In this section, we give an overview of continuous query
execution in our system.

Determined by the semantic mapping between continuous queries and SQL queries, given
a logical plan T of a query, fragments of T that can potentially be executed in the database
engine are sub-trees of T that contain only R2R operators. We call such a sub-tree of T
as a migration candidate. A composition of several R2R operators produces one relation
from one or more relations, and hence can be regarded as a R2R operator as well (see
Section 2.1). We regard each migration candidate as a composite R2R operator. A mi-
gration candidate can be translated into a SQL query and executed in the database engine.
Particularly, base relations involved in the SQL query map to the input relations of the mi-
gration candidate; the result of the SQL query maps to the output relation of the migration
candidate.
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Figure 1: Execution of continuous queries across a SPE and an IMDB.

Figure 1 illustrates how a continuous query is executed across the SPE and the IMDB
in our system. The SPE acts as the gateway of external data streams. Federated query
execution involves data transfer between the SPE and the database engine. Specifically,
for each migration candidate placed in the database engine, we need to transfer relevant
input data from the SPE to the database engine; and transfer execution results from the
database engine back to the SPE.

To retain the original query semantics, the SQL query corresponding to a migration can-
didate must be re-executed in response to changes in the input relations of the migration
candidate. To coordinate the data transfer between the two engines and the re-execution of
the corresponding SQL query, we introduce a new operator MIG into the SPE. A MIG op-
erator acts as a wrapper of a migration candidate executed in the IMDB. It controls the data
transfer between the two engines and hides the execution specifics within the IMDB from
the SPE. In a parallel environment, MIG operators run in parallel with other query opera-
tors in the SPE. However, from the SPE’s perspective, each migration candidate wrapped
by a MIG operator is a black-box, and the original pipelined relationships among operators
in the migration candidate is no longer visible.

Execution Plan Representation. Given a logical plan T = (O, E) of a continuous query,
we denote an execution plan of T as P(T ) = (O′, E ′,M). Ox

i ∈ O′ represents a physical
operator in the execution plan, where x ∈ {spe, db}. Specifically, Ospe

i represents a basic
query operator (selection, join, etc.) placed in the SPE, and Odb

i represents a migration
candidate placed in the database engine. For ease of reference, in the remainder of this
paper, we refer to a basic query operator placed in the SPE as a SPE-op and a composite
operator representing a migration candidate placed in the database engine as a DB-op.
e′ij ∈ E ′ represents the data flow from Ox

i to Oy
j (x, y ∈ {spe, db}). Finally,M defines a

mapping from O to O′. For each Ox ∈ O′,M(Ox) defines the subset of O that Ox maps
to. Specifically,M(Ospe) is a set containing only one logical operator;M(Odb) is a set
containing one or more logical operators. Notations used for representing physical plans
are summarized in Table 1 as well.

4 The Optimization Objective
A common performance metric for a continuous query executed over data streams is the
output rate of the query [GO03]. Therefore, maximizing the query output rate is a widely
adopted objective in continuous query optimization [AN04, VN02]. Maximizing the out-
put rate of a query is equivalent to maximizing the amount of input data processed by the
query in unit time, which we define as the query throughput in this paper. Intuitively, an
execution plan reaches its maximum throughput when it can keep up with the data arrival
rate. This capability of keeping up with the data arrival rate is defined as the feasibility of
the plan [AN04]. A continuous query is a feasible query if it has at least one feasible plan.



The optimization objective on the query throughput suggests that a query optimizer should
favor feasible plans over infeasible plans for feasible queries, and should pick the plan
that can maximize the query throughput for infeasible queries. However, what if a query
has multiple feasible plans? It has been shown in [AN04] that given enough resources,
all feasible plans of a continuous query have the same throughput. Therefore, in this
case, we apply a different optimization objective—that is, minimizing the total resource
utilization of the query. The motivation behind is that intuitively, the less resources each
query consumes, the more number of queries that a system can execute concurrently. In
summary, our optimization objective is as follows:

• For feasible queries, find the feasible execution plan which has the least resource uti-
lization.
• For infeasible queries, find the plan which has the maximum the query throughput.

Generally, given two execution plans of a continuous query, possible situations faced by
an optimizer, and the respective appropriate optimization decision are the following:

• Situation 1: One plan is feasible and the other is infeasible. → Choose the feasible plan.
• Situation 2: Both plans are feasible. → Choose the one with less resource utilization.
• Situation 3: Both plans are infeasible. → Choose the one with higher throughput.

Discussion. Ayad et al. [AN04] adjust the above optimization objectives to incorporate the
influence of load shedding. They insert load shedding operators into plans of an infeasible
query, thereby turning all infeasible plans into feasible ones. In this paper, we focus on
discussing continuous query optimization in a federated environment and do not consider
applying load shedding for infeasible queries.

5 The Cost Model
To achieve the optimization objective described in the previous section, we propose a cost-
based optimizer. Without loss of generality, we consider continuous queries whose logical
plans have window operators appear only as leaf nodes and R2S operators appear only
as root nodes. Note that a query with window or R2S operators appearing as internal
nodes can always be split into a set of sub-queries, with the logical plan of each sub-
query satisfying the above condition. We also assume a highly parallel environment with
abundant memory for query execution. Hence, operators are fully pipelined and do not
time-share CPU resources.

We assume that data from source streams arrive at a relatively stable rate. The data rate λSi

of each source stream Si in a plan P defines how much data from Si should be processed
byP within unit time. We refer to data arrived from all source streams in a plan within unit
time as the unit-time source arrivals. We further define the amount of data that an operator
produces as a result of the unit-time source arrivals as the source-driven output-size of the
operator, denoted by λout. Note that (1) the source-driven output-size of an operator is
the amount of data produced by the operator as a result of unit-time source-arrivals, but is
not the amount of data generated by the operator within unit time, which is also know as
the output rate; (2) the source-driven output-size of an operator Oi is used as the source-
driven input-size (denoted by λin) by its direct downstream operator Oj to estimate the
source-driven output-size of Oj .



Given data rates of all source streams involved in a query, the source-driven output-size
λout of each operator can be estimated in a bottom-up way. In this paper, we adapt the
method proposed in [AN04] under our query semantics model (see Section 2.1) to estimate
λout of window-based selection, projection, and join. Specifically, for a selection or a
projection with selectivity f 1, its source-driven output-size is

λout = fλin. (1)

For a join operator, suppose that the size of its left input relation is WL, the size of the
right input relation is WR, and the selectivities relative to the left and the right relations
are fL and fR, respectively. Its source-driven output-size can be estimated by Eq. (2). The
size of a relation is defined as the number of tuples contained in the relation, which can be
estimated in a bottom-up way as described in [AN04].

λout = λinL
fRWR + λinR

fLWL (2)

Recall that we define aggregate operators to produce results at each slide of the upstream
window (see Section 2.1). For a time-based sliding window, if the slide size is β time
units, then on average the unit-time sliding frequency, denoted as l, is 1/β. For a tuple-
based sliding window whose slide size is β tuples, the sliding frequency depends on the
data rate of the source stream as well, and is estimated as l = λs/β. Suppose that the
average number of result groups, as determined by the associated grouping predicate of
the aggregate operator, is g. We estimate the source-driven output-size of an aggregate
operator as

λout = lg. (3)

5.1 Operator Cost
Having introduced the estimation of source-driven input/output-sizes of operators, we are
ready to estimate costs of physical operators in an execution plan. Each tuple arriving at
an operator requires some processing effort from the operator. We define the average time
that an operator Ox

j requires to process a single tuple from a direct upstream operator Ox
i

as the unit processing cost of Ox
j for Ox

i , denoted by cji, or simply cj if Ox
j has only one

direct upstream operator. For an operator Ox
j with k upstream operators, we define the

total cost of Ox
j caused by unit-time source-arrivals as the source-driven input processing

cost, and denote it by uj . We estimate uj as

uj =

k∑
i=1

λicji. (4)

To keep up with the data arrival rate, the time needed to process a single tuple by each
operator in a pipeline must be shorter than the average data arrival interval at the operator.
In other words, the constraint

∑k
i=1 λicji ≤ 1, namely uj ≤ 1, must hold [AN04, VN02].

An operator that cannot meet the this constraint is the bottleneck of the pipeline.

Cost of SPE-ops. The cost estimation method described above can be used directly to
estimate costs of SPE-ops in an execution plan. The unit processing cost c of a specific
SPE-op depends on the type and the physical implementation of the operator.

1The selectivity of a projection is 1.



Cost of DB-ops. In contrast to a SPE-op, which maps to a single logical operator, a DB-op
maps to one or more logical operators and is evaluated as one single SQL query. Hence, the
unit processing cost of a DB-op is practically the execution cost of the corresponding SQL
query. Moreover, each time when a DB-op is executed, we need to transfer the relevant
input data from the SPE, and the execution results back to the SPE (see Section 3). The
costs of inter-engine data transfer must be taken into account as well. In summary, the unit
processing cost of a DB-op consists of three parts: the cost of transferring relevant input
data from the SPE to the database, the cost of evaluating the SQL query, and the cost of
transferring the SQL query results back to the SPE. In our prototype system, we extended
and tuned the built-in cost model of the IMDB to estimate the cost of DB-ops.

5.2 Execution Plan Cost

Based on the cost estimation for individual operators described in Section 5.1, we now
introduce the cost model for a complete execution plan.

Corresponding to the optimization objectives defined in Section 4, we define the cost of
an execution plan P with m operators, denoted by Cu(P), as a two dimensional vector
consisting of two cost metrics: the bottleneck cost Cb(P) and the total utilization cost
Cu(P); namely, C(P) = 〈Cb(P), Cu(P)〉. Cb(P) and Cu(P) are computed as follows:

Cb(P) = max{uxj : j ∈ [1,m]}. (5)

Cu(P) =
m∑
j=1

uxj (6)

Note that here the “bottleneck” refers to the operator with the highest source-driven input
processing cost in the plan. We use the bottleneck cost to check the feasibility of a plan.
Moreover, for infeasible plans of a query, a higher bottleneck cost implies that the plan
can handle fewer input data per unit time; therefore, we also use the bottleneck cost as an
indicator of the throughput of an infeasible plan. The total utilization cost estimates the
total amount of resources required by the plan to process unit-time source arrivals.

Based on the above cost metrics for execution plans, we define the optimal plan of a given
continuous query as follows:
Definition 1. For a continuous query CQ, an execution plan P is an optimal plan of CQ,
iff for any other plan P ′ of CQ, one of the following conditions is satisfied:

Condition 1◦: Cb(P) ≤ 1 < Cb(P ′)
Condition 2◦: Cb(P) ≤ 1, Cb(P ′) ≤ 1, and Cu(P) ≤ Cu(P ′)
Condition 3◦: 1 < Cb(P) ≤ Cb(P ′)

Each condition in Definition 1 applies in a specific situation described in Section 4. Con-
dition 1◦ is applied when P is feasible and P ′ is infeasible; Condition 2◦ is applied when
both P and P ′ are feasible; and Condition 3◦ is applied when both P and P ′ are infeasible.

6 Two-Phase Optimization
In principle, a R2R operator of a query can be executed either in the SPE or in the database
engine. However, the placement decision for the operator does not influence its pipelined
relationships with its upstream and downstream operators. Consequently, the options of



the execution engine for an operator can be treated as physical implementation alternatives
of the operator [BCE+05], thereby allows integrating the selection of the execution engine
for operators into the physical plan enumeration phase of a query optimizer.

A continuous query could have a large number of semantically equivalent logical plans due
to, for instance, different join ordering possibilities. Even for an individual logical plan T
with n R2R operators, there are in total 2n possible execution plans for T . Due to the large
search space of execution plans, exhaustive search for the optimal plan is too expensive.
In this paper, following the idea applied in many existing federated, distributed, or parallel
database systems, we adopt a two-phase optimization approach [HS91]. Specifically, the
optimization process is divided into Phase-One, which determines the optimal logical plan
for a given query, considering the join ordering and the push-down/up of aggregates, etc.;
and Phase-Two, which determines the execution engines of operators in the logical plan
picked in Phase-One.

The System R style dynamic programming optimizer [SAC+79] is a widely used query
optimizer in existing database systems. It relies on the so-called principle of optimality
to prune away expensive plans as early as possible. We would like to adopt the System
R style optimization approach in our optimizer as well, to find the optimal logical plan in
Phase-One. However, to be able to use this approach, we must first show that the principle
of optimality holds in the context of continuous query optimization as well; namely, the
optimal plan for joining a set of k streams S = {S1, S2, . . . , Sk}with another stream Sk+1

can be obtained by joining stream Sk+1 with the optimal plan that joins all streams in S.

...

λL λR

Sk+1

S1 S2 Sk

k+1

k

Figure 2: Illustrative logical plan
that extends the subplan joining a set
of streams S = {S1, S2, . . . , Sk} to
join with another stream Sk+1.

Let us consider the join query in Figure 2. The win-
dow operators are skipped for brevity. We denote
the optimal plan for joining the set of streams S =
{S1, S2, . . . , Sk} as Popt. Any suboptimal plan is
denoted as Ps. Suppose that the next stream to be
joined is Sk+1, which incurs λR unit-time source-
driven arrivals at the new join operator (denoted as
./k+1). Note that the total number of join results
produced by Popt as a result of unit-time arrivals
from all streams in S is the same as that produced
by Ps. Namely, the source-driven output-sizes of
./k are identical in all plans that join streams in S.

Hence, according to Eq. (4), we can infer that the source-driven input processing cost u
of ./k+1 is the same in all plans extended from plans for ./k. Denoting the plan extended
from Popt to join with Sk+1 as P ′opt, and the plan extended from Ps to join with Sk+1 as
P ′s, we now prove that P ′opt is still optimal compared to any P ′s.

Proof Sketch.

Case 1: Popt is feasible. In this case, a plan Ps is suboptimal either because it is infeasible
(Condition 1◦ in Definition 1), or because it is feasible as well but has a higher total
utilization cost (Condition 2◦).

• Case 1.1: If Ps is infeasible, then the plan P ′s extended from Ps with ./k+1 is still
infeasible. Extending Popt with ./k+1 can either leave the resulting plan P ′opt feasible



if u ≤ 1, or make P ′opt infeasible if u > 1. In the former case, it is obvious that
P ′opt is better than P ′s. In the later case, we must compare the bottleneck costs of P ′opt
and P ′s. Cb(P ′opt) now equals u. Cb(P ′s) equals Cb(Ps) if u < Cb(Ps), or u if u
≥ Cb(Ps). In either case, we have 1 ≤ Cb(P ′opt) ≤ Cb(P ′s). Therefore, P ′opt is still
optimal (Condition 3◦).
• Case 1.2: If Ps is also feasible but has a higher total utilization cost than Popt, then the

feasibility of P ′opt and P ′s is determined by u in the same way. Specifically, if u ≤ 1,
then both P ′opt and P ′s are feasible. Moreover, Cu(P ′s) is higher thanCu(P ′opt), because
Cu(P ′s) =Cu(Ps)+u, Cu(P ′opt) =Cu(Popt)+u, andCu(P ′s)>Cu(P ′opt). Therefore,
P ′opt is optimal compared to P ′s according to Condition 1◦. If u > 1, then both P ′opt
and P ′s are infeasible, and we have Cb(P ′opt) = Cb(P ′s) = u > 1. Therefore, P ′opt is
still optimal according to Condition 3◦.

Case 2: Popt is infeasible. In this case, Ps can be suboptimal only when Ps is infeasible
and 1 < Cb(Popt) < Cb(Ps) (Condition 3◦). Plans extended from infeasible plans remain
infeasible. Therefore, both P ′opt and P ′s are infeasible. Depending on the value of u, the
relationship between Cb(P ′opt) and Cb(P ′s) is one of the following cases:

• If u < Cb(Popt) < Cb(Ps), then Cb(P ′opt) = Cb(Popt) ≤ Cb(P ′s) = Cb(Ps).
• If Cb(Popt) ≤ u < Cb(Ps), then Cb(P ′opt) = u < Cb(P ′s) = Cb(Ps).
• If Cb(Popt) < Cb(Ps) ≤ u, then Cb(P ′opt) = Cb(P ′s) = u.

We can observe that 1 < Cb(P ′opt) ≤ Cb(P ′s) (Condition 3◦) holds in all three cases.
Hence, P ′opt is still optimal. �

Discussion. The above proof shows that the key reasons for the applicability of the prin-
ciple of optimality are: (1) the source-driven input processing cost u of the new join op-
erator ./k+1 is the same in all plans extended from a possible plan that joins streams
S1, S2, . . . , Sk; (2) u of ./k+1 does not change when extending ./k+1 to join with other
streams.

7 Pruning in Phase-Two
Taking the plan produced in Phase-One as an optimal logical plan, our optimizer deter-
mines in Phase-Two the execution engine for each operator in the plan in a bottom-up
way. In this section, we describe the pruning strategy used by our optimizer in Phase-Two
to further reduce the search space and prove its validity.

By studying the characteristics of the cost of individual SPE-ops and DB-ops, as well as
the influence of their costs on the cost of the entire execution plan, we have observed the
following properties of SPE-ops: (1) the source-driven input processing cost u of a SPE-op
Ospe is identical in all partial plans rooted at Ospe; (2) the source-driven input processing
cost of Ospe in a partial plan P rooted at Ospe is not changed when P is further extended.
In fact, these two properties are similar to that of the join operators in Figure 2, which
suggests that we can apply a similar principle of optimality for pruning. Specificially, to
obtain an optimal (partial) plan rooted at a SPE-op Ospe, it suffices to consider only the
optimal partial plans rooted at the direct upstream operators of Ospe.

Let us consider the logical plan shown in Figure 3a. Suppose that the current logical
operator being enumerated is Oj . Because we adopt a bottom-up enumeration approach,
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Figure 3: Pruning opportunities when enumerating partial plans rooted at a SPE-op.

the enumeration for Oi should have completed. Also suppose that we obtain in total two
partial plans untilOi, denoted by I1 and I2 (see Figure 3b). I1 is rooted at a SPE-op and I2
is rooted at a DB-op. If we do not consider pruning, we can construct two SPE-op rooted
partial plans until Oj ; one plan extends I1, denoted by J1, and the other plan extends I2,
denoted by J2. We now prove that indeed we need to construct only one SPE-op rooted
partial plan until Oj , based on the optimal partial plan between I1 and I2.

Proof Sketch. This proof consists of two parts. In the first part we show that the optimality
relationship between J1 and J2 is the same as that between I1 and I2. In the second part,
we show that for any pair of complete plansP1 andP2, the optimality relationship between
P1 and P2 is the same as that between I1 and I2, if P1 and P2 differ from each other only
by the partial plans until Oj in the way that the partial plan in P1 is J1 and in P2 is J2.

Part 1: We first show that J1 is better than J2 if I1 is better than I2. According to
Definition 1, there are three possible situations where I1 can be better than I2. For each
situation, the proof to show that J1 is better than J2 is similar to the proof for a specific
case discussed in Section 6. Hence, here we provide only references to the corresponding
cases in the proof in Section 6.

• Situation 1: Cb(I1) ≤ 1 < Cb(I2), i.e., I1 is feasible whereas I2 is infeasible. The
proof is similar to that for Case 1.1.
• Situation 2: Cb(I1) ≤ 1, Cb(I2) ≤ 1, and Cu(I1) ¡ Cu(I2), i.e., both I1 and I2 are

feasible. The proof is similar to that for Case 1.2.
• Situation 3: 1 < Cb(I1) ≤ Cb(I2), i.e., both I1 and I2 are infeasible. The proof is

similar to that for Case 2.

The symmetric case that J2 is better than J1 if I2 is better than I1 can be proved in the
same way. Moreover, we can easily extend the proof to show that for an operator Oj with
multiple direct upstream operators, the optimal SPE-op rooted partial plan until Oj can be
constructed from the respective optimal partial plans until each direct upstream operator
of Oj .

Part 2: In this part, we show that for a pair of complete plans which are constructed as
extensions of J1 and J2 respectively, if they differ from each other only by the partial plan
J1 and J2, then the optimality relationship between them is the same as that between J1
and J2. Strictly, we need to show that the optimality is retained along the plan construction



procedure until the root node of the logical plan. However, if we can prove for the direct
downstream operator of Oj , which is Ok in Figure 3a, that no matter in which engine Ok

is placed, the optimality relationship between the partial plans extended from J1 and J2
is the same as the optimality relationship between J1 and J2, then we can apply the same
reasoning recursively. Therefore, in the following, we only show that for the two partial
plan pairs (K1, K2) and (K3, K4) in Figure 3c, the optimality within each pair is the same
as that between J1 and J2, and is therefore the same as that between I1 and I2.

For the pair (K1, K2) where Ok is assigned to the SPE, the same proof in Part 1 can be
applied. The proof for the pair (K3, K4) is similar. Note that in the partial plans K3 and
K4, Ok is placed in the database engine, and the source-driven input processing cost u of
Odb

k is λjcdbk . If the downstream operator of Ok in K3 and K4 is placed in the database
engine as well, then the two resulting plans, say K ′3 and K ′4, have a composite operator
Odb

k′ . The source-driven input processing cost u′ of Odb
k′ is λjcdbk′ . Although u′ is different

from u, u′ is the same in both K ′3 and K ′4 and therefore does not influence the optimality
relationship between K ′3 and K ′4. �

Search Space Size. With the above described pruning strategy, for a logical plan with n
R2R operators, we get only one SPE-op rooted complete execution plan, all the other plans
are rooted at a DB-op. For logical plans containing only unary operators, we can reduce
the search space size from 2n to n + 1. For logical plans containing also binary opera-
tors, the search space size depends heavily on the number of binary operators in the tree;
because when constructing a DB-op-rooted plan at a binary operator, we must consider
all possibilities of combining partial plans until the left child of the operator with partial
plans until the right child of the operator. In the worst case where all n R2R operators in
the plan are binary operators, the logical plan is a complete binary tree. Ignoring window
operators at leaf nodes, the height of the tree is h = dlog2(n+ 1)e. Given the height of a
binary tree, we can define the upper bound of the search space size as function of h in a
recursive way:

f(1) = 2; f(h) = 1 + f(h− 1)2.

The complexity of f(h) isO(f(h)) = 22
h−1

. By replacing hwith dlog2(n+1)e,O(f(h))
is approximately 2n/2, which is exponential. To be able to optimize queries with a large
number of binary R2R operators with reasonable time, one solution is to decompose the
logical plan produced in Phase-One into multiple subplans, each with a moderate number
of binary operators, optimize these subplans in their post order, and construct the final
execution plan by combining optimal execution plans of the subplans.

8 Evaluation
In this section, we evaluate the proposed continuous query optimizer from three aspects:
the optimization time (Section 8.2), the quality of optimization results (Section 8.3), and
the influence of the plan feasibility check on the quality of optimization results (Sec-
tion 8.4).

8.1 Setup

We implemented the proposed optimization solution by directly extending the SQL opti-
mizer of the columnar IMDB in our prototype. Specifically, we added the cost estimation



for SPE-ops, and implemented the proposed two-phase optimization approach. Our sys-
tem is deployed on a HP Z620 workstation with 24-cores (1.2GHz per core) and 96 GB
RAM, running SUSE 11.2.

For our experiments we used the real-world energy consumption data originating from
smart plugs deployed in households [JZ14]. Each smart plug is uniquely identified by a
combination of a house id, a household id, and a plug id. Each plug has two sensors.
One sensor measures the instant power consumption with Watt as unit; the other sensor
measures the total accumulated power consumption since the start (or reset) of the sensor
with kWh as unit. Each measurement is represented as a relational tuple. The type of
the measurement is indicated by the property field in the tuple. Sensors report measure-
ments every 1 second and measurements from all smart plugs are merged into a single data
stream. The original rate of this sensor data stream is approximately 2000 tuples/sec. To
test with higher data rates, we devised a custom program, which can replay the original
sensor data at a configurable speed, simulating a higher report frequency of smart plugs.

We used the following continuous queries (CQ1–CQ6) to test our federated optimizer:

• CQ1: For each smart plug, count the number of load measurements in the last 5 minutes
whose value is higher than 90% of the maximum load in the last 5 minutes.

• CQ2: For each smart plug, count the number of load measurements in the last 5 minutes
whose value is higher than the average load in the last 5 minutes.

• CQ3: For each smart plug, compare the maximum and average load within the last 5
minutes with the maximum and average load within the last 1 minute.

• CQ4: CQ4 is similar to CQ3 but only compares the average load within the two dif-
ferent time windows.

• CQ5: For each household, find the maximum total load reported by a single smart plug
within the last 5 minutes.

• CQ6: For each smart plug, compare the average loads within the last 1, 3, and 5 min-
utes.
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Figure 4: Logical plans of CQ1–CQ6.

All windows in these queries are time-based sliding windows and slide every 1 second.
Figure 4 shows the logical query plans devised by our optimizer. We intentionally included
CQ2 andCQ4 into our test, although they look similar toCQ1 andCQ3 respectively. The
reason is that windowed AVG can be computed incrementally whereas windowed MAX
cannot [GHM+07]. Hence, the cost of AVG is normally lower than the cost of MAX in
SPEs. We would like to study queries with aggregate operators of different costs.



8.2 Optimization Time

We first tested the efficiency of our optimizer in terms of the optimization time. As men-
tioned in Section 7, the search space size, thereby the optimization time, is heavily influ-
enced by the number of binary R2R operators in the query. Therefore, in this experiment,
we took CQ4 as a template and constructed multi-way join queries which compare the
average loads of each smart plug within time windows of variant sizes. For instance, a
5-way join query constructed in this way first calculates the average loads of each smart
plug within the last 1, 3, 5, 7, and 9 minutes, and then joins these average loads for each
smart plug. In this experiment, we did not apply the query decomposition in Phase-Two as
discussed in Section 7. For each query, we conducted the optimization 10 times and took
the median of the measured optimization times. The results are summarized in Table 2.

Table 2: Optimization time for queries with different numbers of operators.

2-way join 5-way join 8-way join
Opt. time of Phase-One (ms) 0.9 68.5 100.5

#R2R op. in Phase-One produced logical plan 6 15 24

#plans examined in Phase-Two w/o pruning 64 327168 16777216
#plans examined in Phase-Two with pruning 11 312 8411

Opt. time of Phase-Two with pruning (ms) 12.3 908.6 61335.5

Total opt. time (ms) 13.2 977.1 61436

We can see from the results that with the pruning approach described in Section 7, we
significantly reduced the number of plans to be examined in Phase-Two optimization. The
results also suggest that in our system, it is reasonable to decompose large logical plans
into subplans with 15 operators in Phase-Two. With such decomposition, the logical plan
of the 8-way join query produced in Phase-One can be split into two sub-plans, thereby
reducing the optimization time from 1 minute to around 2 seconds. Note that we did not
provide the optimization time of Phase-Two when the pruning is deactivated, because the
experiment would have taken too long and is not meaningful due to the large search space.
To be complete, we list the optimization times for CQ1–CQ6 in Table 3.

Table 3: Optimization time for CQ1–CQ6.

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6

Opt. time of Phase-One (ms) 1.3 1.3 0.87 0.86 22.5 5.2

Opt. time of Phase-Two with pruning (ms) 7.7 7.5 11.4 10.8 1.3 58.9

Total opt. time (ms) 9 8.8 12.27 11.66 23.8 64.1

8.3 Effectiveness of the Federated Optimizer

Recall that our optimizer estimates costs of query plans based on data rates of source
streams, and finds the optimal plan of a query based on the costs of plans (see Section 5).
The data rates of source streams also define the requested throughput of a query. For
each query in our test, we varied the rate of the sensor data stream from 1000 to 40000
tuples/sec, and asked the optimizer to produce the optimal execution plan for each data
rate. For each optimal plan produced by the optimizer, we deployed it in our prototype
system, pushed the sensor-data into the system at the corresponding rate, and observed the
actual throughput of the plan. The results of this experiment are shown in Figure 5.
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Figure 5: Performance of devised optimal plans for CQ1–CQ6 at increasing input data rates.

For CQ1 and CQ2 (see Figure 5a1 and 5b1), for all examined data rates the optimizer
picked the plan which places SELECTs in the SPE and the rest of the operators in the
columnar IMDB. The reason for this optimization decision is that CQ1 and CQ2 com-
pute correlated aggregates, which require scanning the tuples within a time window twice
to compute a result. Even for a data rate of 1000 tuples/sec, a 5-minute time window
contains 300k tuples. Frequent re-scanning of the window pushes the SPE to its limits.
In contrast, the IMDB can compute the correlated aggregate more efficiently, despite the
cost of transferring data between the two engines. The SELECTs are placed in the SPE to
reduce the amount of data to be transferred to the IMDB.

To verify the superiority of our operator-level optimization approach over a query-level
optimization approach, we compared the maximum throughputs of the optimal federated
plan Popt, the pure SPE plan Pspe, and the pure IMDB plan Pdb for CQ1 and CQ2.
We see from Figure 5a2 and Figure 5b2 that for both queries, the optimal federated plan
can result in about 8 times higher throughput than the pure SPE plan. The maximum
throughput of the pure IMDB plan is also lower than the federated plan, because it transfers
more data from the SPE to the IMDB, thereby resulting in a higher cost.



For CQ3 (see Figure 5c1), the plan which places only SELECTs in the SPE (denoted by
Popt1) remains optimal until the data rate reaches 20k tuples/sec. For higher data rates,
Popt1 becomes infeasible, and the plan which places both SELECTs and JOIN in the SPE
(denoted by Popt2) becomes optimal. Note that when the data rate is below 20k tuples/sec,
Popt2 is also feasible; however, it is not picked by the optimizer because it has higher total
utilization cost than Popt1. The maximum throughputs shown in Figure 5c2 confirm that
Popt1 becomes infeasible at a lower data rate compared to Popt2. When the data rate is 20k
tuples/sec, the actual throughput of Popt1 is indeed lower than the requested throughput,
which suggests that Popt1 is already infeasible at this date rate, and Popt2 should have
been chosen. The throughput of Popt2 at the rate of 20k tuples/sec is indicated by the
hollow square in Figure 5c1. This outcome of missing the actual optimal plan is caused by
the imperfection of the cost estimation, which we believe is a common issue shared by all
cost-based optimizers. However, the difference between the actual throughputs of Popt1

and Popt2 is small, and the optimizer successfully finds the correct optimal plan for all the
other examined data rates. For CQ3, the federated plan again results in higher throughput
than the pure SPE and IMDB plans.

The optimization results forCQ4 is similar to that forCQ3 (see Figure 5d1). However, the
pure SPE plan of CQ4 can support much higher data rate than the pure SPE plan of CQ3
(see Figure 5d2), which confirms that computing MAX is more expensive than computing
AVG in the SPE.

For CQ5 (see Figure 5e1), the optimizer picked the plan which places SELECT in the SPE
when the data rate is below 10k tuples/sec. For higher data rates, the total utilization cost
of this plan becomes higher than that of the pure SPE plan, due to the increasing cost
of data transfer between the two engines. As a result, the optimal plan switches to the
pure SPE plan. Moreover, unlike for CQ1-CQ4, the pure SPE plan of CQ5 has higher
maximum throughput compared to its federated plan alternatives (see Figure 5e2).

CQ6 is a 3-way join query. Its optimal plan changed twice as the increase of the data rate
(see Figure 5f1). For data rates below 10k tuples/sec, the optimal plan has only SELECTs
in the SPE (denoted by Popt1). At higher data rates until 20k tuples/sec, the optimal plan
has the second JOIN operator in the SPE as well (denoted by Popt2). For even higher
data rates, only the aggregation operators are left in the IMDB (denoted by Popt3). The
switch from Popt1 to Popt2 was due to the higher total utilization cost of Popt1, and the
switch from Popt2 to Popt3 was due to the infeasibility of Popt2 (Figure 5f2). Similar to
the case of CQ3 and CQ3, the optimizer missed the actual optimal plan at the rate of 25k
tuples/sec, as indicated by the hollow triangle in Figure 5f1.

In summary, our federated optimizer performs well with respect to the quality of optimiza-
tion results. Especially, for each examined query, when the data rate of the source stream
is so high that the query becomes infeasible, our optimizer is able to choose the plan which
can maximize the query throughput.

8.4 Influence of the Plan Feasibility Check

Last, we studied the influence of the plan feasibility check on the quality of optimization
results. To do this, we turned off the feasibility check of query plans in the optimizer, and
repeated the tests described in the previous section for all six queries. For each query, we
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Figure 6: Throughput of optimal plans devised with and without plan feasibility check.

compared the actual throughputs of the optimal plans devised with and without the plan
feasibility check under each examined data rate.

The optimization results for CQ1, CQ2, and CQ5 without plan feasibility check are iden-
tical to that with plan feasibility check. However, for CQ3 and CQ4, without plan feasi-
bility check, the optimizer picked the plan which places only SELECTs in the SPE at all
examined data rates. However, this plan is suboptimal than the plan devised with feasi-
bility check when the data rate is above 20k tuples/sec (see Figure 6a and 6b). For CQ6,
without the feasibility check, the optimizer did not pick the plan which has only aggre-
gate operators in the IMDB when the data rate is above 30k tuples/sec, which indeed has
higher throughput (see Figure 6c). These results confirm the necessity of the plan feasibil-
ity check in continuous query optimization. It also implies that naive approaches for partial
plan pruning without considering the plan feasibility may result in suboptimal plans.

9 Related Work
Leveraging database engines for data stream processing has been studied in a few prior
works [CH10, FKC+09, LGI09]. Truviso [FKC+09] integrates the continuous analytics
technology into a fully functional database system by executing SQL queries continuously
and incrementally over data before storing the data in the database. DataCell [LGI09] is a
stream processing engine built on top of MonetDB. Chen et al. [CH10] extend PostgreSQL
to support stream processing. This body of work focuses on studying how a database
engine can be modified to support stream processing. In contrast, our work aims to make
use of the fact that SPEs and modern database systems already co-exist in many real-world
setups, and proposes federated optimization and execution of continuous query to leverage
the advantages of both types of systems. Our experimental results in Section 8.3 confirm
the potential of federated database and stream processing systems. For the same reason,
we did not follow the approach of extending the SPE directly with same implementations
used in the IMDB, which can avoid the inter-system data transfer and lead to a better
query processing performance. However, our query optimization approach can be applied
by such extended SPEs as well to determine the best implementation alternative of each
query operator from all alternatives available in the system.

MaxStream [BCD+10] is a federated stream processing system which integrates multiple
SPEs and databases. The federator layer is built on top of a relational database system. In
MaxStream, data streams first pass through the federator layer, where the data are persisted
into, or joined with static database tables if needed; subsequently, the streams are for-
warded to a specific SPE for processing. However, MaxStream does not have an optimizer



for continuous queries. ASPEN [LMB+10] is a project about integrating and processing
distributed stream data sources in sensor devices, traditional PCs, and servers. It has a
federated optimizer to assign queries across multiple subsystems. However, the optimizer
does not consider the feasibility of continuous query plans, and lacks experimental support
for its effectiveness. Cyclops [LHB13] integrates a centralized stream processing system
(Esper [Esp]), a distributed stream processing system (Storm [Sto]), and a distributed batch
system (Hadoop [Apa]) for executing continuous windowed aggregate queries. Cyclops
uses black-box modeling to build cost models. Its optimizer selects the most suitable sys-
tem for a given continuous query based on the window specification (range and slide) and
the data arrival rate. In contrast, our optimizer works at the operator granularity, whose
superiority has been confirmed by our experimental results.

Optimization of SQL queries in federated or distributed database systems [BCE+05, DH02,
SL90] has been well-studied. However, existing solutions cannot be used directly for
federated continuous query optimization, because they do not consider the feasibility of
continuous query plans. Optimization of continuous SPJ queries concerning the plan feasi-
bility and query throughput was initially studied in [VN02], and was extended by [AN04],
which considers the optimal placement of load shedding operators in infeasible plans when
computation resources are insufficient. Cammert et al. [CKSV08] deal with the similar re-
source management problem, and propose techniques which are based on the adjustment
of window sizes and time granularities. Moreover, the cost model in [CKSV08] supports
queries containing aggregation operators. However, these works do not consider query
optimization in federated systems as described in this paper. There is a large body of work
about operator placement in distributed or heterogeneous stream processing environments
(e.g., [DLB+11] and works surveyed in [LLS08]). These works normally assume that
the pipelined relationships among query operators are already determined, and consider
only the placement of operators in the available processing nodes/systems. Furthermore,
they do not adopt the feasibility-dependent optimization objective as we do. Neverthe-
less, studying how to adapt these optimization approaches in our Phase-Two optimization
would be an interesting direction for future work.

10 Conclusion
In this paper, we propose a cost-based query optimization approach for federated execu-
tion of continuous queries over a SPE and a database system. To fully exploit the potential
of hybrid execution of continuous queries, our optimizer works at the operator level and
determines the optimal placement for each operator in a query based on the characteristics
of the query and involved data streams. Moreover, the optimizer takes into account the
feasibility of continuous query plans and the non-additivity of the query execution cost
caused by the federation. We experimentally demonstrated the effectiveness of our opti-
mizer in a prototype system composed of a state-of-the-art SPE and a columnar IMDB.
Even for simple queries, our optimizer can make non-obvious decisions which result in up
to 4 and 1.6 times higher throughput compared to the pure SPE-based execution and the
pure IMDB-based execution, respectively. This result confirms that distributed execution
of continuous query across SPEs and database engines is viable and promising, worthy of
further exploration.

For future work, we plan to relax our assumptions on the static environment and consider



runtime re-optimization in response to changing stream characteristics. Extending the cur-
rent solution to support multi-query optimization (MQO) is another important direction.
Apart from finding common fragments among multiple queries as is done by conventional
MQO methods, we envision the sharing of inter-system data transfer channels as a partic-
ularly important aspect in the extended solution to save the communicate cost. In addition,
in principle, we can add more SPEs or database engines into our system. With more than
two engines, the two-phase optimization approach can still be applied; however, the prun-
ing strategy currently applied in Phase-Two needs to be revisited.
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