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Abstract:
Value driver trees are a well-known methodology to model dependencies such as

the definition of key performance indicators. While the models have well-known se-
mantics, they lack the right tool support for business simulations, because a flexi-
ble implementation that supports multidimensional, hierarchical value driver trees and
data bindings is very complex and computationally challenging. This paper tackles
this problem by proposing an approach for generic enterprise simulations which are
based on value driver trees. Our approach is two-fold: we present the definition of a
simulation meta model at design time, and the run-time simulation tool. The simu-
lation meta model describes the structure of the dependency graph, the data binding,
and the parametrization of the model to simulate data changes. The simulation tool
can then be used to create and edit simulation model instances and run simulations in
real-time by leveraging an in-memory column store. Besides the formal description of
the approach, this work presents a prototypical implementation of the simulation tool
and an evaluation using data of a consumer packaged goods company.

1 Introduction

Companies invest a significant amount of time in their yearly budgeting process and the
related quarterly or monthly forecasts. Especially in the higher management levels, this
process is often questioned in terms of efficiency and effectiveness. Based on this de-
ficiency, radical approaches such as Beyond Budgeting or alternative solutions such as
Balanced Scorecards have been proposed. In this context, Predictive Analytics has been
established with the goal to model cause and effect in an enterprise. This functionality can
be used in the pre-budgeting process, be part of a forecast to evaluate scenarios in terms of
their goal fulfillment, or try to support decisions in day to day operations.

Within the group of predictive analytics, value driver trees such as the DuPont model [CS00]
are a well-known methodology. Examples for the usage of value driver trees can be found
in several areas of an enterprise.

• Procurement: product costs depending on commodity prices, raw material pur-
chase prices and currency exchange rates.



• Production: product costs depending on used energy, energy prices and production
loss.

• Sales: sales depending on sales prices, behavior of competing companies, and avail-
able income of customers.

• Finance: profitability based on sales volume by market segmentation, sales prices,
and currency exchange rates. Payment depending on delivery quality and adherence
to delivery dates.

All these example use cases rely on linear relationships, which can be expressed by a sin-
gle linear equation or by a set of linear equations with dependencies among another, as
introduced by Zwicker [Zwi03]. The modeling of business processes using value driver
trees provides a number of benefits: The decision making process can be supported by
focusing on the key factors. This is accompanied by a reduction of the planning effort by
focusing on the essentials. Also, it supports the collaboration among different business
areas to create a common strategy. And if the key performance indicators are directly con-
nected to the operational value drivers, planning for finance and accounting can become
more realistic and efficient.

The challenge of using value driver trees is not the correct modeling of a company or the
mathematical complexity of such a solution. It is more the acquisition of the required data,
the limited capabilities of existing solutions and the expensive calculation of hierarchical
dependencies on large data sets. The data is often not transparently available in ERP
systems (e.g. bill of materials and routing coefficients). Also, it may be distributed among
multiple systems (e.g. sales, production, and finance) and only be known implicitly (e.g.
elasticity factors for the inverse demand function for products). Available solutions on the
other hand are developed for specific use cases such as the calculation of product costs,
the calculation of advertising effects, or the calculation of currency effects. With changing
requirements however, the solution cannot be adapted but has to be reimplemented. One
of the biggest drawbacks of current solutions is the run-time of calculations. While sub-
second response times are required for a usage in the on-line decision making and planning
process, a majority of existing solutions is running batch processes and therefore cannot
meet this goal. Batch processes typically run several hours, most of the time over night.

A possible solution for this problem is the in-memory database technology. Previous work
by Plattner [Pla09] has shown the benefits of columnar storage using main memory tech-
nology for analytical workloads. With the improved query performance, it is now possible
to simplify complex data models [Pla14] that relied on materialized aggregates and other
workarounds that were used to provide reasonable response times. The result is an in-
creasing data transparency. Another benefit is the flexibility to query the data, even when
the data sets are large and relations need to be included. This flexibility is important for
retrieving the value drivers (sales volume, purchasing volume, expenses) as well as the
coefficients between the drivers.

In this work, we introduce a solution to address the mentioned challenges and problems.
First, we introduce a meta model how dependency graphs can be created and configured.
Second, we explain the simulation tool and how it creates and runs simulations. Third, we



present a prototypical implementation of the HPI Business Simulator tool and demonstrate
it using a real-world example. Finally, we analyze the query performance for both storage
types, a row store and a column store.

2 Approach

Our approach is divided into three parts to build a tool for business simulations: the defi-
nition of a generic calculation model, the data binding and the simulation.

2.1 Calculation Model

Simulation models are hypergraphs. Each node has a name, available dimensions and
can be connected with other nodes by operations, which are hyperedges. The simulation
model specifies the available dimensions with their hierarchy levels. Time can for example
be hierarchically structured into years, months, and days. The dimensions of a specific
node are determined by the data binding or the operation and dimension specification of
connected nodes in case the node has no data source.

Operations define the dependencies between nodes. Each operation has to define the way it
calculates the values for the result nodes. Thereby, the approach can define the calculations
of common operations as addition, subtraction, multiplication and division, which work in
a similar way as for one-dimensional data. Combining the values of nodes with different
levels of hierarchies may require a preaggregation phase. In other cases, the operation
cannot be executed at all. The signature and algorithm of each operation has to be defined.
The addition operation connects two nodes with the same dimensions and creates a node
with values for these specific dimensions. The hierarchy level of the resulting node is the
minimum of both input nodes.

2.2 Data Binding

Nodes of the calculation model can obtain their values in two ways. On the one hand, they
can query their data directly from database tables. On the other hand, they can calculate
their values by solving the equation defined by the operation between connected nodes
and itself. For the first case, data bindings are required. Our work focuses on relational
databases as a data source, although it is also possible to use other sources. Data bindings
define the database connection and SQL queries for all supported dimension, filter crite-
ria and hierarchy levels. A generic way to implement it without specifying each single
possible query is to define the SQL query to request the data for all dimensions at the
lowest hierarchy levels. Based on this data, filter criteria and aggregations can be applied
to support selections and views of the data at higher hierarchy levels. Figure 1 shows a
dependency graph with marked nodes for data sources.
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Figure 1: Dependency graph for the operation profit: Bold nodes represent data sources
with their dimensions. The values of nodes which are marked by arrows can be calculated
recursively by following the operations from which the arrows come from.

2.3 Simulation

The simulation tool supports creating, changing and running simulation models. In gen-
eral, different user groups are responsible for model editing and specifying simulation sce-
narios. The choice of KPIs and its adaption to better fit the company’s structure is executed
at management level. As the management level does not have a detailed knowledge of the
data schema, it will delegate the task of defining data bindings to more technical staff. The
individual simulations can then be done in collaboration with controllers. Hence, the tool
has two modes to separate these activities: one for editing simulation model instances,
the other for executing simulations. The editor mode comprises an interface to create de-
pendency models as described in Section 2.1 and allows to specify the data binding. A
graphical modeling tool can be used as user-friendly interface, as well as a text editor to
describe the model with structured text, e.g. JSON or XML.

Simulation model instances could then be validated before switching to the simulation
mode. The simulation mode allows drilldowns, i.e. filtering the node values by dimen-
sions and hierarchy levels. The number of dimensions specifies the number of drilldown
possibilities. The depth of the hierarchy specifies how deep the drilldown goes. If a node
does not support the current drilldown level, it is excluded from the simulation. For each
drilldown level, simulation parameters can be specified. Thereby, the model has to de-
fine directions for edges to specify which nodes are affected by the parameterization of
connected nodes.

Figure 2 shows an example of a simulation. Based on the dependency graph as given in
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(a) Initial state with data from the database table.

Marginal Income
Paul, Berlin, P1, 14/10/9, $200

Net Sales
Paul, Berlin, P1, 14/10/9, $300

Variable Costs
Paul, Berlin, P1, 14/10/9, $100

Sales Volume
Paul, Berlin, P1, 14/10/9, 10

Price per Unit
Paul, Berlin, P1, 14/10/9, $30

Cost per Unit
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Cost center, Time(month)

Time(month)

(b) Simulation with an absolute value for price per unit.

Marginal Income
Paul, Berlin, P1, 14/10/9, $100

Net Sales
Paul, Berlin, P1, 14/10/9, $200

Variable Costs
Paul, Berlin, P1, 14/10/9, $100

Sales Volume
Paul, Berlin, P1, 14/10/9, 10

Cost per Unit
P1, 14/10/9, $10

*

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses
CC1, 14/10, $15

Operating Profit
14/10, $85

-

Cost center, Time(month)

Time(month)

(c) Simulation with an absolute value for net sales.

Figure 2: Examples of Simulations.



Figure 3: The editor mode of the HPI Business Simulator.

Figure 1 with data sources for net sales, sales volume, cost per unit and expenses, the
other nodes can be calculated forming the graph as presented in Figure 2a. The values
are the basis of the simulation. The double arrows specify in which directions the values
are propagated. Each value, independent whether it was directly queried from a database
table or was calculated, can be overwritten by simulation parameters. Figure 2b shows the
simulation of an increased price per unit ($30 instead of $15) and how it propagates via the
endpoints with double arrows. When parameterizing nodes with incoming double arrows,
e.g. setting net sales to $200, the connected nodes are ignored (cf. Figure 2c).

3 Proof of Concept

In this section, we explain the capabilities of the HPI Business Simulator. For a proof of
concept (POC), we have engaged with a Fortune 500 company in the consumer packaged
goods (CPG) industry and discussed their deficiencies and needs in the area of business
simulation. Based on the input and data set they provided to us, we created a prototype of
our simulation model.

3.1 HPI Business Simulator

In the first step, we created an instance of a simulation model using the editor mode of
our tool. The created graph consists of 8 nodes (the node for sales volume is represented
twice) and 4 multidimensional attributes called dimensions. The complete tree is shown
in Figure 3.
{

" d i m e n s i o n s " : {
" t ime " : [ " y e a r " , " month " , " day " ] ,
" p r o d u c t " : [ " p r o d u c t " ] ,
" c u s t o m e r : [ " c u s t o m e r " ] ,
" r e g i o n " : [ " c o u n t r y " , " c i t y " ]



} ,
" nodes " : {

" node1 " : {
" name " : " S a l e s Volume " ,
" d i m e n s i o n s " : {" c u s t o m e r " : " c u s t o m e r " , " r e g i o n " : " c o u n t r y " , " t ime " : " day

" , " p r o d u c t " : " p r o d u c t " } ,
" u n i t " : " kg " ,
"SQL " : "SELECT SUM(AMOUNT) AS AMOUNT FROM ACDOCA WHERE ACCOUNT = ’ S a l e s

Volume ’ "
} ,
" node2 " : {

" name " : " P r i c e p e r Un i t " ,
" d i m e n s i o n s " : {" c u s t o m e r " : " c u s t o m e r " , " r e g i o n " : " c o u n t r y " , " t ime " : " day

" , " p r o d u c t " : " p r o d u c t " } ,
" u n i t " : "USD/ kg " ,

} ,
" node3 " : {

" name " : " Net S a l e s " ,
" d i m e n s i o n s " : {" c u s t o m e r " : " c u s t o m e r " , " r e g i o n " : " c o u n t r y " , " t ime " : " day

" , " p r o d u c t " : " p r o d u c t " } ,
" u n i t " : "USD" ,
"SQL " : "SELECT SUM(AMOUNT) AS AMOUNT FROM ACDOCA WHERE ACCOUNT = ’ Net

S a l e s ’ "
}

} ,
" o p e r a t i o n s " : {

" node3 " : " node1 ∗ node2 "
}

}

Listing 1: An extract of the model definition using the JSON format.

We use the JavaScript Object Notation (JSON) as a data format to store the model infor-
mation. Each node is represented as an object, specifying its name and corresponding
properties. The ID is used as key for the corresponding node object. Listing 1 is an exam-
ple for a subgraph that appears in Figure 3. The first level of the JSON structure contains
three values, the existing dimensions, the nodes itself, and the operations which represent
the connections between the nodes. As explained in Section 2.1, a node consists of a set
of properties. The node with the name Sales Volume has a data source and therefore has
an SQL query that defines how its data can be retrieved. In contrast, the connected node
Price per Unit has no data binding and calculates its values using the formula defined in
the operations list. In this subgraph, the units are not equal for all nodes. In cases where
the units are not the same, the editor ensures that the operations return the correct units.
While creating the model, the editor constantly checks the model for consistency and cor-
rectness. In this example, the unit of Sales Volume is kg and the unit of Price per Unit is
USD/kg. Since the unit kg is in the denominator and numerator, they cancel each other
out, leaving USD as the unit for Net Sales.

3.1.1 Consumer Packaged Goods Data

The underlying data set we got had a normalized data schema with one transactional table
(ACDOCA) and multiple corresponding dimension tables. The transactional table consists
of approximately 300 million line items which represent a period of 5 years. Dimensions
that were included are the account type, cost center, product information, and location
information. For our scenario, we used a denormalized data schema to remove the join



Table 1: Example data for the underlying ACDOCA table with four dimensions.

DocID G/L Account Cost Center Product Customer Location Date Qty Amount
01 COGS Product 1 Paul Berlin 10/9/2014 10 100.00
02 COGS Product 2 Paul Berlin 10/9/2014 5 75.00
03 Inventory 1/1/2014 -175.00
04 Revenue Product 1 Paul Berlin 10/9/2014 10 150.00
05 Revenue Product 2 Paul Berlin 10/9/2014 5 125.00
06 Receivables Paul Berlin 10/9/2014 275.00
07 Expenses Cost Center 1 10/2014 15.00

complexity for the model creation process. Table 1 shows example data for the relevant
columns used by the business simulator. The two main columns are G/L Account and
Quantity respectively Amount which are included in every query. G/L Account describes
the type of account a line item corresponds to. The other five dimension columns are only
included into the SQL query when they are required.

Based on the customer feedback, the HPI Business Simulator (cf. Figure 3) shows three
values per node. First, the actual value (A) for the current period which includes all values
that exist until today. Second, the forecasted value (F) for the complete period that is based
on A and plan data (P). Third, the simulated value (S) which is based on F and changes
calculated by the simulation model. By default, the forecast and the simulation value are
equal because no parameter has been changed. By adjusting a node with an absolute or
relative value, the valued driver tree is recalculated and updated with the new results. As a
result, the simulation value changes and consequently reflects the changes compared to the
forecast value. The user is able to select certain filters to drill down into a dimension, e.g. a
certain product. In this case, the adjustments are only applied for the selected dimensions.

3.2 In-Memory Column Store

A key enabler for our tool is in-memory column stores, such as SAP HANA [FCP+11].
By keeping all data in main memory, the run-time of analytical queries, as required for the
business simulator, can be reduced significantly compared to traditional disk-based sys-
tems. The second benefit is the columnar data layout. Since the mapping of the simulation
model only accesses columns that are required for a calculation, the amount of processed
data is kept to a minimum. This functionality is especially beneficial in the context of en-
terprise systems where examples show that tables can have more than 300 columns. The
columnar layout is also well suited for analytical queries, e.g. aggregate queries, where
larger data sets of a column have to be scanned and aggregated.

A third benefit is an aggregate cache which is a transparent caching engine inside the
database [MP13]. Other than traditional materialized views, the aggregate cache does not
create a hard copy of the data and as a result does not return stale data. The aggregate cache
leverages the internal table representation in certain column stores like SAP HANA or
Hyrise [GKP+10] and always works on the latest data. During a typical simulation session,
different scenarios are analyzed and compared. A scenario includes a set of changes in
the value driver tree. The differences between the scenarios vary, but are usually small.
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Figure 4: A performance comparison between a row store, a column store and a column
store with an aggregate cache for three query types.

Consequently, the executed queries are similar and can therefore benefit from the aggregate
cache. Further, the created scenarios are constantly reviewed and the updated forecast is
compared to the simulated value. In that process, the simulator can rely on the aggregate
cache to speed up the query execution and reduce the overall system load.

3.2.1 Performance Analysis

In our evaluation, we measured the performance of the queries using a row store, a column
store and a column store with an aggregate cache inside SAP HANA [FCP+11]. The
benchmarks have been conducted on a server featuring 128 CPUs (Intel Xeon X7560)
with 2.27GHz and 24MB cache each. The entire machine was comprised of 512GB of
main memory. The data set size on disk was approximately 130GB. Every benchmark was
run at least five times and the displayed results are the median of all runs.

In Figure 4, the query performance for three types of queries is evaluated. The three types
differ in the amount of data they have to aggregate. To demonstrate the impact of a column
store and the aggregate cache, we compared the performance with an in-memory row store
inside SAP HANA. The results are shown relatively to the row store, which serves as the
baseline for the other two approaches. With the first query, the value of a single value
driver, in this case Net Sales, for all categories was retrieved. Using the column store,
the query is accelerated by a factor 4. For the aggregate cache, it is accelerated by a
factor of 35. For the second and third query, the same query was used with a filter on the
category. Category 1 is the biggest category including approximately 40% of all products.
Category 2 is a smaller category including only 10% of the products. The execution time
for the row store resulted in the same execution time as for the first query, even though
the number of records that had to be aggregated was smaller. In contrast, the performance
of the column store increased with an increasing selectivity resulting in an acceleration



of a factor 10 for the third query. The performance using the aggregate cache was only
slightly faster for the second and third query (factor 38 compared to the row store). This
is a result of its characteristic since it only caches the results of the main storage and still
has to aggregate the delta storage on the fly. The records in the delta storage just slightly
decreased for query 2 and 3. A deeper evaluation of the aggregate cache was done by
Müller and Plattner [MP13].

The benchmark shows that a column store is superior to a row store for typical business
simulator queries. However, more investigation and benchmarking is necessary, especially
in the context of executing multiple similar queries at the same time, as required by the
business simulator.

4 Related Work

Besides sophisticated controlling software, spreadsheets, MS Excel in particular, are the
main simulation tools in enterprises. The RS-Controlling-System 1 offers Excel templates
for target-performance comparisons of balance sheets, profit and loss statements and cap-
ital flows. Spreadsheets have an easy to understand interface, but do not build on con-
solidated enterprise data, which is stored in a RDBMS. On the other side, SQL lacks the
support for array-like calculations as Witkowski et al. claim in [WBB+03]. Their idea is
to combine both and offer a spreadsheet-like computation in RDBMS through SQL ex-
tensions. In [WBB+05], they continue that research and introduce a way to translate MS
Excel computations in SQL. The simulation model is thereby expressed in MS Excel. This
approach comes with two drawbacks. First, it does not encapsulate the definition of the
simulation model so that it is not tangible, but only expressed by multiple formulas spread
over many table cells. Second, MS Excel is bound to the two-dimensional representation
and cannot visualize graphical dependencies very well.

To describe simulation models, Golfarelli et al. introduce a methodology to formally ex-
press and build what-if analyses in [GRP06]. They divide the process to design simulations
into seven phases: goal analysis, business modeling, data source analysis, multidimen-
sional modeling, simulation modeling, data design and implementation, and validation.
To describe the actual simulation model they propose an extension of UML 2 activity
diagrams [GR08]. However, they do not focus on how to develop generic simulation ap-
plications that are based on the formal descriptions.

5 Conclusions and Future Work

This paper proposes a new approach to build business simulations. It consists of a multidi-
mensional generic model to describe the dependencies of value drivers as basis of simula-
tions and the concept of a simulation tool to create, edit and parameterize model instances

1http://www.controllingportal.de/Shop/Excel-Tools/RS-Controlling-System.html



to simulate scenarios.

The main benefits of our solution can be summarized as follows: The generic business
simulation approach enhances the focus on key factors that drive the business. Further, it
reduces the planning effort and drives cross-functional collaboration and alignment. By
directly using transactional data as a basis for the simulation, we exclude consistency
issues. Most importantly, the simulation solution provides leadership with visibility into
different alternatives to achieve desired outcomes.

The calculation model and database binding are described in a semi-formal way in prose
text and JSON. Future work can formalize the model and the multidimensional operations.
Of special interest are the possibilities and specifications of simulation changes. Beside,
an investigation of optimization strategies for the required database queries, which base on
groupings with different granularities, can be done.
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